Химическое равновесие в системах, содержащих растворы электролитов (решение задач)
217. (3/3-94).* В воде растворено некоторое количество нелетучего слабого электролита, не диссоциирующего при низкой температуре, но полностью диссоциирующего на два иона при температурах, близких к температуре кипения воды. Найти температуру кипения данного раствора, если известно, что этот же раствор замерзает при 271,5 К. Учесть, что для чистой воды D
Нпл = 6,029 кДж/моль, Тпл = 273,15 К, D
Нисп = 40,62 кДж/моль, Ткип = 373,15 К. Определить давление паров воды над раствором при 299 К, если над чистой водой при 298 К оно равно 0,03168 бар.
Решение. Так как раствор замерзает при 271,5 K, то есть на 1,65 K ниже нормальной точки плавления льда, то можно оценить содержание примеси в растворе, предполагая, что во льду она не растворяется, по уравнению Шредера:
ln(1−x)=
Δ
пл
H
R
(
1
T
пл
0
−
1
T
пл
)
MathType@MTEF@5@5@+=feaagaart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciiBaiaac6gacaGGOaGaaGymaiabgkHiTiaadIhacaGGPaGaeyypa0ZaaSaaaeaacqqHuoardaWgaaWcbaGaam4peiaadUdbaeqaaOGaamisaaqaaiaadkfaaaWaaeWaaeaadaWcaaqaaiaaigdaaeaacaWGubWaa0baaSqaaiaad+dbcaWG7qaabaGaaGimaaaaaaGccqGHsisldaWcaaqaaiaaigdaaeaacaWGubWaaSbaaSqaaiaad+dbcaWG7qaabeaaaaaakiaawIcacaGLPaaaaaa@4BAE@
, мольная доля примеси x = 1,61 %.
При температуре кипения x2 = 2x = 3,22 % и, предполагая раствор предельно
разбавленным и γH2O = 1, можно оценить температуру кипения из уравнения
ln(1−
x
2
)=
Δ
исп
H
R
(
1
T
кип
−
1
T
кип
0
)
MathType@MTEF@5@5@+=feaagaart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciiBaiaac6gacaGGOaGaaGymaiabgkHiTiaadIhadaWgaaWcbaGaaGOmaaqabaGccaGGPaGaeyypa0ZaaSaaaeaacqqHuoardaWgaaWcbaGaamioeiaadgebcaWG=qaabeaakiaadIeaaeaacaWGsbaaamaabmaabaWaaSaaaeaacaaIXaaabaGaamivamaaBaaaleaacaWG6qGaamioeiaad+dbaeqaaaaakiabgkHiTmaalaaabaGaaGymaaqaaiaadsfadaqhaaWcbaGaamOoeiaadIdbcaWG=qaabaGaaGimaaaaaaaakiaawIcacaGLPaaaaaa@4EE7@
.
Отсюда вычисляем
T
кип
=374,1 K
MathType@MTEF@5@5@+=feaagaart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivamaaBaaaleaacaWG6qGaamioeiaad+dbaeqaaOGaeyypa0JaaG4maiaaiEdacaaI0aGaaiilaiaaigdacaaMe8Uaam4saaaa@4052@
.
Давление паров над раствором находим из закона Рауля для растворителя в предельно разбавленных растворах
P
н.п.
=(1−x)
P
н.п.
0
MathType@MTEF@5@5@+=feaagaart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaBaaaleaacaWG9qGaaiOlaiaad+dbcaGGUaaabeaakiabg2da9iaacIcacaaIXaGaeyOeI0IaamiEaiaacMcacaWGqbWaa0baaSqaaiaad2dbcaGGUaGaam4peiaac6caaeaacaaIWaaaaaaa@439C@
, где
P
н.п.
0
MathType@MTEF@5@5@+=feaagaart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaDaaaleaacaWG9qGaaiOlaiaad+dbcaGGUaaabaGaaGimaaaaaaa@3A9B@
определяется из уравнения Клапейрона –Клаузиуса для равновесия "жидкость – идеальный газ"
dln
P
н.п.
0
dT
=
Δ
исп
H
R
T
2
MathType@MTEF@5@5@+=feaagaart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacaWGKbGaciiBaiaac6gacaWGqbWaa0baaSqaaiaad2dbcaGGUaGaam4peiaac6caaeaacaaIWaaaaaGcbaGaamizaiaadsfaaaGaeyypa0ZaaSaaaeaacqqHuoardaWgaaWcbaGaamioeiaadgebcaWG=qaabeaakiaadIeaaeaacaWGsbGaamivamaaCaaaleqabaGaaGOmaaaaaaaaaa@47AF@
или
P
н.п.
0
(
T
2
)
P
н.п.
0
(
T
1
)
=exp(
Δ
исп
H
R
(
T
2
−
T
1
T
1
T
2
)
)
MathType@MTEF@5@5@+=feaagaart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacaWGqbWaa0baaSqaaiaad2dbcaGGUaGaam4peiaac6caaeaacaaIWaaaaOGaaiikaiaadsfadaWgaaWcbaGaaGOmaaqabaGccaGGPaaabaGaamiuamaaDaaaleaacaWG9qGaaiOlaiaad+dbcaGGUaaabaGaaGimaaaakiaacIcacaWGubWaaSbaaSqaaiaaigdaaeqaaOGaaiykaaaacqGH9aqpciGGLbGaaiiEaiaacchadaqadaqaamaalaaabaGaeuiLdq0aaSbaaSqaaiaadIdbcaWGbrGaam4peaqabaGccaWGibaabaGaamOuaaaadaqadaqaamaalaaabaGaamivamaaBaaaleaacaaIYaaabeaakiabgkHiTiaadsfadaWgaaWcbaGaaGymaaqabaaakeaacaWGubWaaSbaaSqaaiaaigdaaeqaaOGaamivamaaBaaaleaacaaIYaaabeaaaaaakiaawIcacaGLPaaaaiaawIcacaGLPaaaaaa@5A71@
.
Подставляя данные условия задачи, находим
P
н.п.
0
(299 K)=1,056⋅
P
н.п.
0
(298 K)=0,03347 бар
MathType@MTEF@5@5@+=feaagaart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaDaaaleaacaWG9qGaaiOlaiaad+dbcaGGUaaabaGaaGimaaaakiaacIcacaaIYaGaaGyoaiaaiMdacaaMc8Uaam4saiaacMcacqGH9aqpcaaIXaGaaiilaiaaicdacaaI1aGaaGOnaiabgwSixlaadcfadaqhaaWcbaGaamypeiaac6cacaWG=qGaaiOlaaqaaiaaicdaaaGccaGGOaGaaGOmaiaaiMdacaaI4aGaaGPaVlaadUeacaGGPaGaeyypa0JaaGimaiaacYcacaaIWaGaaG4maiaaiodacaaI0aGaaG4naiaaykW7caaMc8UaaeymeiaabcdbcaqGaraaaa@5DAB@
.
А давление насыщенных паров над раствором
P
н.п.
=0,03293 бар
MathType@MTEF@5@5@+=feaagaart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaBaaaleaacaWG9qGaaiOlaiaad+dbcaGGUaaabeaakiabg2da9iaaicdacaGGSaGaaGimaiaaiodacaaIYaGaaGyoaiaaiodacaaMc8UaaeymeiaabcdbcaqGaraaaa@43CE@
.
235. (2/3-99).* Цинковый электрод гальванического элемента Якоби находился исходно в 10–3 М растворе ионов Zn2+. Найти, как изменится ЭДС этой ячейки при 25 °С, если к раствору Zn2+ добавили такой же объем 10–3 М раствора ионов Pb2+. Можно полагать, что внутри рассматриваемой части гальванического элемента термодинамическое равновесие устанавливается очень быстро. Известно, что при 298 К
E
P
b
2+
/
Pb
o
MathType@MTEF@5@5@+=feaagaart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyramaaDaaaleaadaWcgaqaaiaadcfacaWGIbWaaWbaaWqabeaacaaIYaGaey4kaScaaaWcbaGaamiuaiaadkgaaaaabaGaam4Baaaaaaa@3D3D@
= –0,126 В отн. Н.В.Э.,
E
Z
n
2+
/
Zn
o
MathType@MTEF@5@5@+=feaagaart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyramaaDaaaleaadaWcgaqaaiaadQfacaWGUbWaaWbaaWqabeaacaaIYaGaey4kaScaaaWcbaGaamOwaiaad6gaaaaabaGaam4Baaaaaaa@3D69@
= –0,763 В отн. Н.В.Э.
Решение. После добавления Pb2+ протекает реакция Pb2+ + Zn0
↔ Pb0 + Zn2+.
Константа равновесия этой реакции составляет
a
Z
n
2+
a
P
b
2+
=exp(
nΔ
E
0
F
RT
)=exp(
2(−0,126+0,763)96485
8,314⋅298
)=3,5⋅
10
21
MathType@MTEF@5@5@+=feaagaart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacaWGHbWaaSbaaSqaaiaadQfacaWGUbWaaWbaaWqabeaacaaIYaGaey4kaScaaaWcbeaaaOqaaiaadggadaWgaaWcbaGaamiuaiaadkgadaahaaadbeqaaiaaikdacqGHRaWkaaaaleqaaaaakiabg2da9iGacwgacaGG4bGaaiiCamaabmaabaWaaSaaaeaacaWGUbGaeuiLdqKaamyramaaCaaaleqabaGaaGimaaaakiaadAeaaeaacaWGsbGaamivaaaaaiaawIcacaGLPaaacqGH9aqpciGGLbGaaiiEaiaacchadaqadaqaamaalaaabaGaaGOmaiaacIcacqGHsislcaaIWaGaaiilaiaaigdacaaIYaGaaGOnaiabgUcaRiaaicdacaGGSaGaaG4naiaaiAdacaaIZaGaaiykaiaaiMdacaaI2aGaaGinaiaaiIdacaaI1aaabaGaaGioaiaacYcacaaIZaGaaGymaiaaisdacqGHflY1caaIYaGaaGyoaiaaiIdaaaaacaGLOaGaayzkaaGaeyypa0JaaG4maiaacYcacaaI1aGaeyyXICTaaGymaiaaicdadaahaaWcbeqaaiaaikdacaaIXaaaaaaa@70AB@
и весь свинец из раствора восстановится до металлического состояния, а эквивалентное количество цинка растворится. Окончательная концентрация катионов цинка 10–3 М – такая же, как и была. Следовательно, ЭДС не изменится.
244. (3/3-06).* Произведение растворимости Сu(OH)2 в водном растворе при 25 оС составляет 2.10–20 М3. Оцените, как будет изменяться электродный потенциал электрода Сu2+/Cu при повышении рН, если исходная активность Cu2+ в растворе при рН = 3 составляла 1,0 М. Стандартный электродный потенциал для полуреакции
Сu2+ + 2e– → Cu0 cоставляет + 0,399 В относительно Н.В.Э.
Решение: При активности Сu2+ = 1 M, равновесие Cu(OH)2 ↔ Cu2+ + 2(OH–) достигается при aOH = 1,41.10–10 M.
Поэтому при рН ниже (14 – 9,85 = 4,15) электрод представляет собой электрод первого рода и
Е (pH < 4,15) = + 0,399 В отн. Н.В.Э.
При рН выше 4,15 активностькатионов меди
a
C
u
2+
=
2⋅
10
−20
a
O
H
−
2
MathType@MTEF@5@5@+=feaagaart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaDaaaleaacaWGdbGaamyDamaaCaaameqabaGaaGOmaiabgUcaRaaaaSqaaaaakiabg2da9maalaaabaGaaGOmaiabgwSixlaaigdacaaIWaWaaWbaaSqabeaacqGHsislcaaIYaGaaGimaaaaaOqaaiaadggadaqhaaWcbaGaam4taiaadIeadaahaaadbeqaaiabgkHiTaaaaSqaaiaaikdaaaaaaaaa@4764@
ln
a
C
u
2+
=ln(2⋅
10
−20
)−2ln
a
O
H
−
MathType@MTEF@5@5@+=feaagaart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciiBaiaac6gacaWGHbWaa0baaSqaaiaadoeacaWG1bWaaWbaaWqabeaacaaIYaGaey4kaScaaaWcbaaaaOGaeyypa0JaciiBaiaac6gacaGGOaGaaGOmaiabgwSixlaaigdacaaIWaWaaWbaaSqabeaacqGHsislcaaIYaGaaGimaaaakiaacMcacqGHsislcaaIYaGaciiBaiaac6gacaWGHbWaa0baaSqaaiaad+eacaWGibWaaWbaaWqabeaacqGHsislaaaaleaaaaaaaa@4F46@
= 19,11-4,6 рН
В этом интервале рН электрод представляет собой электрод II рода и
E (pH > 4,15) = E0Cu2+/Cu + RT/2F. (19,1 – 4,6 рН) = (0,644 – 0,059 рН) В отн. Н.В.Э.