Использование статистических методов для описания химического равновесия в идеальных системах (решение задач)
293. (1/3-97).* Используя методы статистической термодинамики, найти температурную зависимость константы равновесия Кр для газофазной диссоциации двухатомной молекулы. Привести график ожидаемого изменения Кр в широкой области температур.
Решение.
A2à 2A
K
P
=exp(
−
ΔE
RT
)
(
kT
P
0
V
)
Δν
∏
i
(
z
i
'
)
ν
i
=
=
kT
P
0
V
⋅
z
trA
2
z
tr
A
2
z
rot
−1
z
vib
−1
(
2
s
A
+1
)
2
2
s
A
2
+1
exp(
−
ΔE
RT
)
MathType@MTEF@5@5@+=feaagaart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacaWGlbWaaSbaaSqaaiaadcfaaeqaaOGaeyypa0JaciyzaiaacIhacaGGWbWaaeWaaeaacqGHsisldaWcaaqaaiabfs5aejaadweaaeaacaWGsbGaamivaaaaaiaawIcacaGLPaaadaqadaqaamaalaaabaGaam4AaiaadsfaaeaacaWGqbWaaWbaaSqabeaacaaIWaaaaOGaamOvaaaaaiaawIcacaGLPaaadaahaaWcbeqaaiabfs5aejabe27aUbaakmaarafabaWaaeWaaeaacaWG6bWaa0baaSqaaiaadMgaaeaacaGGNaaaaaGccaGLOaGaayzkaaaaleaacaWGPbaabeqdcqGHpis1aOWaaWbaaSqabeaacqaH9oGBdaWgaaadbaGaamyAaaqabaaaaOGaeyypa0dabaGaeyypa0ZaaSaaaeaacaWGRbGaamivaaqaaiaadcfadaahaaWcbeqaaiaaicdaaaGccaWGwbaaaiabgwSixpaalaaabaGaamOEamaaDaaaleaacaWG0bGaamOCaiaadgeaaeaacaaIYaaaaaGcbaGaamOEamaaBaaaleaacaWG0bGaamOCaiaadgeadaWgaaadbaGaaGOmaaqabaaaleqaaaaakiaadQhadaqhaaWcbaGaamOCaiaad+gacaWG0baabaGaeyOeI0IaaGymaaaakiaadQhadaqhaaWcbaGaamODaiaadMgacaWGIbaabaGaeyOeI0IaaGymaaaakmaalaaabaWaaeWaaeaacaaIYaGaam4CamaaBaaaleaacaWGbbaabeaakiabgUcaRiaaigdaaiaawIcacaGLPaaadaahaaWcbeqaaiaaikdaaaaakeaacaaIYaGaam4CamaaBaaaleaacaWGbbWaaSbaaWqaaiaaikdaaeqaaaWcbeaakiabgUcaRiaaigdaaaGaciyzaiaacIhacaGGWbWaaeWaaeaacqGHsisldaWcaaqaaiabfs5aejaadweaaeaacaWGsbGaamivaaaaaiaawIcacaGLPaaaaaaa@890C@
z
trA
2
z
tr
A
2
=
(
2πmkT
h
2
)
3
V
2
(
4πmkT
h
2
)
3/2
V
=
(
πmkT
h
2
)
3/2
V
MathType@MTEF@5@5@+=feaagaart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacaWG6bWaa0baaSqaaiaadshacaWGYbGaamyqaaqaaiaaikdaaaaakeaacaWG6bWaaSbaaSqaaiaadshacaWGYbGaamyqamaaBaaameaacaaIYaaabeaaaSqabaaaaOGaeyypa0ZaaSaaaeaadaqadaqaamaalaaabaGaaGOmaiabec8aWjaad2gacaWGRbGaamivaaqaaiaadIgadaahaaWcbeqaaiaaikdaaaaaaaGccaGLOaGaayzkaaWaaWbaaSqabeaacaaIZaaaaOGaamOvamaaCaaaleqabaGaaGOmaaaaaOqaamaabmaabaWaaSaaaeaacaaI0aGaeqiWdaNaamyBaiaadUgacaWGubaabaGaamiAamaaCaaaleqabaGaaGOmaaaaaaaakiaawIcacaGLPaaadaahaaWcbeqaaiaaiodacaGGVaGaaGOmaaaakiaadAfaaaGaeyypa0ZaaeWaaeaadaWcaaqaaiabec8aWjaad2gacaWGRbGaamivaaqaaiaadIgadaahaaWcbeqaaiaaikdaaaaaaaGccaGLOaGaayzkaaWaaWbaaSqabeaacaaIZaGaai4laiaaikdaaaGccaWGwbaaaa@642B@
.
Для вращательной статсуммы при T < θrot
z
rot
=
1
σ
∑
J−0
∞
(
2J+1
)
exp(−
h
2
J(J+1)
8
π
2
IkT
)=
1
2
∑
J−0
∞
(
2J+1
)
exp(−
h
2
J(J+1)
4
π
2
m
r
2
kT
)
MathType@MTEF@5@5@+=feaagaart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOEamaaBaaaleaacaWGYbGaam4BaiaadshaaeqaaOGaeyypa0ZaaSaaaeaacaaIXaaabaGaeq4WdmhaamaaqahabaWaaeWaaeaacaaIYaGaamOsaiabgUcaRiaaigdaaiaawIcacaGLPaaaaSqaaiaadQeacqGHsislcaaIWaaabaGaeyOhIukaniabggHiLdGcciGGLbGaaiiEaiaacchacaGGOaGaeyOeI0YaaSaaaeaacaWGObWaaWbaaSqabeaacaaIYaaaaOGaamOsaiaacIcacaWGkbGaey4kaSIaaGymaiaacMcaaeaacaaI4aGaeqiWda3aaWbaaSqabeaacaaIYaaaaOGaamysaiaadUgacaWGubaaaiaacMcacqGH9aqpdaWcaaqaaiaaigdaaeaacaaIYaaaamaaqahabaWaaeWaaeaacaaIYaGaamOsaiabgUcaRiaaigdaaiaawIcacaGLPaaaaSqaaiaadQeacqGHsislcaaIWaaabaGaeyOhIukaniabggHiLdGcciGGLbGaaiiEaiaacchacaGGOaGaeyOeI0YaaSaaaeaacaWGObWaaWbaaSqabeaacaaIYaaaaOGaamOsaiaacIcacaWGkbGaey4kaSIaaGymaiaacMcaaeaacaaI0aGaeqiWda3aaWbaaSqabeaacaaIYaaaaOGaamyBaiaadkhadaahaaWcbeqaaiaaikdaaaGccaWGRbGaamivaaaacaGGPaaaaa@7B55@
.
При T >> θrot
z
rot
=
2
π
2
m
r
2
kT
h
2
MathType@MTEF@5@5@+=feaagaart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOEamaaBaaaleaacaWGYbGaam4BaiaadshaaeqaaOGaeyypa0ZaaSaaaeaacaaIYaGaeqiWda3aaWbaaSqabeaacaaIYaaaaOGaamyBaiaadkhadaahaaWcbeqaaiaaikdaaaGccaWGRbGaamivaaqaaiaadIgadaahaaWcbeqaaiaaikdaaaaaaaaa@4503@
.
Для колебательной статсуммы
при T < θvib=
hν
k
MathType@MTEF@5@5@+=feaagaart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacaWGObGaeqyVd4gabaGaam4Aaaaaaaa@3992@
z
vib
=
∑
V−0
∞
exp(
−V
hν
kT
)
=
1
1−exp(
−
hν
kT
)
MathType@MTEF@5@5@+=feaagaart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOEamaaBaaaleaacaWG2bGaamyAaiaadkgaaeqaaOGaeyypa0ZaaabCaeaaciGGLbGaaiiEaiaacchadaqadaqaaiabgkHiTiaadAfadaWcaaqaaiaadIgacqaH9oGBaeaacaWGRbGaamivaaaaaiaawIcacaGLPaaaaSqaaiaadAfacqGHsislcaaIWaaabaGaeyOhIukaniabggHiLdGccqGH9aqpdaWcaaqaaiaaigdaaeaacaaIXaGaeyOeI0IaciyzaiaacIhacaGGWbWaaeWaaeaacqGHsisldaWcaaqaaiaadIgacqaH9oGBaeaacaWGRbGaamivaaaaaiaawIcacaGLPaaaaaaaaa@5929@
При T >> θvib
z
vib
=
T
θ
vib
=
kT
hν
MathType@MTEF@5@5@+=feaagaart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOEamaaBaaaleaacaWG2bGaamyAaiaadkgaaeqaaOGaeyypa0ZaaSaaaeaacaWGubaabaGaeqiUde3aaSbaaSqaaiaadAhacaWGPbGaamOyaaqabaaaaOGaeyypa0ZaaSaaaeaacaWGRbGaamivaaqaaiaadIgacqaH9oGBaaaaaa@4621@
.
Группируя всё выше, получаем:
при T < θrot
K
P
=
2
(
πm
)
3
2
h
3
(
2
s
A
+1
)
2
(
2
s
A
2
+1
)
exp(
−
ΔE
RT
)⋅
(kT)
5
2
P
0
⋅(
1−exp(
−
θ
vib
T
)
)
∑
J−0
∞
{
(
2J+1
)exp(
−
θ
rot
J(J+1)
T
)
}
≈const⋅exp(
−
ΔE
RT
)⋅
(kT)
5
2
MathType@MTEF@5@5@+=feaagaart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4samaaBaaaleaacaWGqbaabeaakiabg2da9maalaaabaGaaGOmamaabmaabaGaeqiWdaNaamyBaaGaayjkaiaawMcaamaaCaaaleqabaWaaSGaaeaacaaIZaaabaGaaGOmaaaaaaaakeaacaWGObWaaWbaaSqabeaacaaIZaaaaaaakmaalaaabaWaaeWaaeaacaaIYaGaam4CamaaBaaaleaacaWGbbaabeaakiabgUcaRiaaigdaaiaawIcacaGLPaaadaahaaWcbeqaaiaaikdaaaaakeaadaqadaqaaiaaikdacaWGZbWaaSbaaSqaaiaadgeadaWgaaadbaGaaGOmaaqabaaaleqaaOGaey4kaSIaaGymaaGaayjkaiaawMcaaaaadaWcaaqaaiGacwgacaGG4bGaaiiCamaabmaabaGaeyOeI0YaaSaaaeaacqqHuoarcaWGfbaabaGaamOuaiaadsfaaaaacaGLOaGaayzkaaGaeyyXIC9aaSaaaeaacaGGOaGaam4AaiaadsfacaGGPaWaaWbaaSqabeaadaWccaqaaiaaiwdaaeaacaaIYaaaaaaaaOqaaiaadcfadaahaaWcbeqaaiaaicdaaaaaaOGaeyyXIC9aaeWaaeaacaaIXaGaeyOeI0IaciyzaiaacIhacaGGWbWaaeWaaeaacqGHsisldaWcaaqaaiabeI7aXnaaBaaaleaacaWG2bGaamyAaiaadkgaaeqaaaGcbaGaamivaaaaaiaawIcacaGLPaaaaiaawIcacaGLPaaaaeaadaaeWbqaamaacmaabaWaaeWaaeaacaaIYaGaamOsaiabgUcaRiaaigdaaiaawIcacaGLPaaaciGGLbGaaiiEaiaacchadaqadaqaaiabgkHiTmaalaaabaGaeqiUde3aaSbaaSqaaiaadkhacaWGVbGaamiDaaqabaGccaWGkbGaaiikaiaadQeacqGHRaWkcaaIXaGaaiykaaqaaiaadsfaaaaacaGLOaGaayzkaaaacaGL7bGaayzFaaaaleaacaWGkbGaeyOeI0IaaGimaaqaaiabg6HiLcqdcqGHris5aaaakiabgIKi7kaadogacaWGVbGaamOBaiaadohacaWG0bGaeyyXICTaciyzaiaacIhacaGGWbWaaeWaaeaacqGHsisldaWcaaqaaiabfs5aejaadweaaeaacaWGsbGaamivaaaaaiaawIcacaGLPaaacqGHflY1caGGOaGaam4AaiaadsfacaGGPaWaaWbaaSqabeaadaWccaqaaiaaiwdaaeaacaaIYaaaaaaaaaa@A7B5@
или
ln
K
P
≈ −
ΔE
RT
+ 2,5 lnΤ + const
MathType@MTEF@5@5@+=feaagaart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciiBaiaac6gacaaMb8Uaam4samaaBaaaleaacaWGqbaabeaakiaadccacqGHijYUcaWGGaGaeyOeI0YaaSaaaeaacqqHuoarcaWGfbaabaGaamOuaiaadsfaaaGaeyiiaaIaey4kaSIaeyiiaaIaaGOmaiaacYcacaaI1aGaeyiiaaIaciiBaiaac6gacaWGKoGaeyiiaaIaey4kaSIaeyiiaaIaam4yaiaad+gacaWGUbGaam4Caiaadshaaaa@52C9@
При θrot << T < θvib
K
P
=
m
π
1
r
2
h
(
2
s
A
+1
)
2
(
2
s
A
2
+1
)
⋅exp(
−
ΔE
RT
)⋅
(kT)
3
2
P
0
⋅(
1−exp(
−
θ
vib
T
)
)≈const⋅exp(
−
ΔE
RT
)
(kT)
3
2
MathType@MTEF@5@5@+=feaagaart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4samaaBaaaleaacaWGqbaabeaakiabg2da9maakaaabaWaaSaaaeaacaWGTbaabaGaeqiWdahaaaWcbeaakmaalaaabaGaaGymaaqaaiaadkhadaahaaWcbeqaaiaaikdaaaGccaWGObWaaWbaaSqabeaaaaaaaOWaaSaaaeaadaqadaqaaiaaikdacaWGZbWaaSbaaSqaaiaadgeaaeqaaOGaey4kaSIaaGymaaGaayjkaiaawMcaamaaCaaaleqabaGaaGOmaaaaaOqaamaabmaabaGaaGOmaiaadohadaWgaaWcbaGaamyqamaaBaaameaacaaIYaaabeaaaSqabaGccqGHRaWkcaaIXaaacaGLOaGaayzkaaaaaiabgwSixlGacwgacaGG4bGaaiiCamaabmaabaGaeyOeI0YaaSaaaeaacqqHuoarcaWGfbaabaGaamOuaiaadsfaaaaacaGLOaGaayzkaaGaeyyXIC9aaSaaaeaacaGGOaGaam4AaiaadsfacaGGPaWaaWbaaSqabeaadaWccaqaaiaaiodaaeaacaaIYaaaaaaaaOqaaiaadcfadaahaaWcbeqaaiaaicdaaaaaaOGaeyyXIC9aaeWaaeaacaaIXaGaeyOeI0IaciyzaiaacIhacaGGWbWaaeWaaeaacqGHsisldaWcaaqaaiabeI7aXnaaBaaaleaacaWG2bGaamyAaiaadkgaaeqaaaGcbaGaamivaaaaaiaawIcacaGLPaaaaiaawIcacaGLPaaacqGHijYUcaWGJbGaam4Baiaad6gacaWGZbGaamiDaiabgwSixlGacwgacaGG4bGaaiiCamaabmaabaGaeyOeI0YaaSaaaeaacqqHuoarcaWGfbaabaGaamOuaiaadsfaaaaacaGLOaGaayzkaaGaaiikaiaadUgacaWGubGaaiykamaaCaaaleqabaWaaSGaaeaacaaIZaaabaGaaGOmaaaaaaaaaa@8904@
или
ln
K
P
≈ −
ΔE
RT
+ 1,5 lnΤ + const
MathType@MTEF@5@5@+=feaagaart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciiBaiaac6gacaaMb8Uaam4samaaBaaaleaacaWGqbaabeaakiaadccacqGHijYUcaWGGaGaeyOeI0YaaSaaaeaacqqHuoarcaWGfbaabaGaamOuaiaadsfaaaGaeyiiaaIaey4kaSIaeyiiaaIaaGymaiaacYcacaaI1aGaeyiiaaIaciiBaiaac6gacaWGKoGaeyiiaaIaey4kaSIaeyiiaaIaam4yaiaad+gacaWGUbGaam4Caiaadshaaaa@52C8@
При T >> θvib
K
P
=
m
π
ν
vib
r
2
(
2
s
A
+1
)
2
(
2
s
A
2
+1
)
⋅exp(
−
ΔE
RT
)⋅
(kT)
1
2
P
0
⋅=const⋅exp(
−
ΔE
RT
)
(kT)
1
2
MathType@MTEF@5@5@+=feaagaart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4samaaBaaaleaacaWGqbaabeaakiabg2da9maakaaabaWaaSaaaeaacaWGTbaabaGaeqiWdahaaaWcbeaakmaalaaabaGaeqyVd42aaSbaaSqaaiaadAhacaWGPbGaamOyaaqabaaakeaacaWGYbWaaWbaaSqabeaacaaIYaaaaaaakmaalaaabaWaaeWaaeaacaaIYaGaam4CamaaBaaaleaacaWGbbaabeaakiabgUcaRiaaigdaaiaawIcacaGLPaaadaahaaWcbeqaaiaaikdaaaaakeaadaqadaqaaiaaikdacaWGZbWaaSbaaSqaaiaadgeadaWgaaadbaGaaGOmaaqabaaaleqaaOGaey4kaSIaaGymaaGaayjkaiaawMcaaaaacqGHflY1ciGGLbGaaiiEaiaacchadaqadaqaaiabgkHiTmaalaaabaGaeuiLdqKaamyraaqaaiaadkfacaWGubaaaaGaayjkaiaawMcaaiabgwSixpaalaaabaGaaiikaiaadUgacaWGubGaaiykamaaCaaaleqabaWaaSGaaeaacaaIXaaabaGaaGOmaaaaaaaakeaacaWGqbWaaWbaaSqabeaacaaIWaaaaaaakiabgwSixlabg2da9iaadogacaWGVbGaamOBaiaadohacaWG0bGaeyyXICTaciyzaiaacIhacaGGWbWaaeWaaeaacqGHsisldaWcaaqaaiabfs5aejaadweaaeaacaWGsbGaamivaaaaaiaawIcacaGLPaaacaGGOaGaam4AaiaadsfacaGGPaWaaWbaaSqabeaadaWccaqaaiaaigdaaeaacaaIYaaaaaaaaaa@7D0D@
или
ln
K
P
≈ −
ΔE
RT
+ 0,5 lnΤ + const
MathType@MTEF@5@5@+=feaagaart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciiBaiaac6gacaaMb8Uaam4samaaBaaaleaacaWGqbaabeaakiaadccacqGHijYUcaWGGaGaeyOeI0YaaSaaaeaacqqHuoarcaWGfbaabaGaamOuaiaadsfaaaGaeyiiaaIaey4kaSIaeyiiaaIaaGimaiaacYcacaaI1aGaeyiiaaIaciiBaiaac6gacaWGKoGaeyiiaaIaey4kaSIaeyiiaaIaam4yaiaad+gacaWGUbGaam4Caiaadshaaaa@52C7@
(сравните с задачей 67. (3/1-99), решенной выше:
для диссоциации Br2 ln KP = –23009/T + 0,663 lnT + 8,12)
311. (5/Э-04).* Природное содержание изотопа 13С составляет 1,12 % всего углерода, а дейтерия 2Н – 1,6 10–4 всего водорода. Определить минимальную работу, необходимую для выделения 1 моля “сверхтяжелого” метана 13СD4 в изобарном процессе при 300 К. Предполагается, что чистый метан доступен в неограниченных количествах.
Решение. Необходимо найти равновесную долю сверхтяжелого метана.
В равновесии доля mС(Dn)H4-n пропорциональна коэффициентам в произведении биномов Ньютона
(0,9888.12С + 0,0112.13С). (0,9998.H + 1,6.10–4.D)4
при соответствующих степенях изотопов, т. е. для 13СD4:
x(13СD4) = 0,0112.1,64.10–16 = 0,0112.6,55.10–16 = 7,34.10–18.
Минимальная работа по выделению 1 моля 13СD4 составит
δWmin = – RT ln(x(13СD4)) = 8,314.300.39,45 = 98,4 кДж моль–1