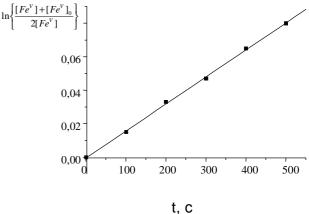
ЗАДАЧИ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ


ЗАДАНИЕ 1.

1. Комплекс железа(V) Fe^{V} способен окислять алкен A в ацетонитриле в соответствии со схемой:

$$Fe^V + A \xrightarrow{k_1} Fe^{III} + продукт$$

$$Fe^{V} + Fe^{III} \xrightarrow{k_2} Fe^{IV}Fe^{IV}$$

Обнаружено, что если в начальный момент времени концентрации Fe^V и А равнялись 0.05 М, зависимость концентрации Fe^V от времени соответствует приведённому графику. Найдите значение k_1 , если известно, что Fe^{III} — очень реакционноспособная частица, а димер $Fe^{IV}Fe^{IV}$ — инертное соединение.

2. Селективная тетрамеризация этилена в 1-октен проводится в стационарных условиях в реакторе полного перемешивания (в реактор подаётся газообразный этилен, а в результате реакции образуется жидкий октен-1). При малых временах контакта t степень превращения этилена α линейно зависит от времени контакта

$$a = bt$$
,

причем коэффициент пропорциональности b не зависит от давления в реакторе. Определите порядок реакции по этилену.

3. При некоторых условиях продуктом реакции тетрафторэтилена (C_2F_4) и ацетилена (C_2H_2) является 1,1-дифторпропин $(C_3F_2H_2)$. В серии опытов с избытком ацетилена начальная концентрация ацетилена выбиралась одинаковой, а начальная концентрация C_2F_4 варьировалась. Продолжительность реакции во всех случаях была одинакова и равна 0.1 с. По приведенным в таблице данным графически оцените порядок реакции образования $C_3F_2H_2$ по тетрафторэтилену.

$[C_2F_4]_0$ моль/л	0,0251	0,0398	0,0631	0,1
$[C_3F_2H_2]$ моль/л	9,46×10 ⁻⁴	$1,27\times10^{-3}$	$1,71\times10^{-3}$	$2,29\times10^{-3}$

4. Гидролиз изоцианатов может протекать с промежуточным образованием карбаминовой кислоты по следующему механизму:

$$1) \quad H_2O + R_3N \xleftarrow{k_1} X$$

2)
$$X + RNCO \xrightarrow{k_2} RNH - COOH + R_3N$$

3)
$$RNH - COOH + H_2O \xrightarrow{k_3} RNH_2 + H_2CO_3$$
 (быстро)

Концентрации X и карбаминовой кислоты предполагаются квазистационарными. Найдите эффективную энергию активации реакции при малых степенях превращения, если известны энергии активации всех стадий и выполняется условие $E_{-1} = E_2$.

5. Найдите уравнения кинетических кривых для всех веществ, участвующих в следующей последовательности мономолекулярных превращений:

$$A \xrightarrow{k} B \xrightarrow{k} C \xrightarrow{k} D \xrightarrow{k} E \xrightarrow{k} G$$
.

В начальный момент времени в системе присутствует только вещество A с концентрацией A_0 .

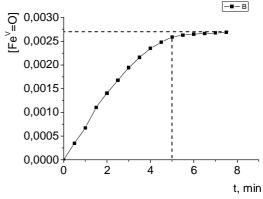
6. После воздействия короткого импульса света в водном растворе нафталина образовались триплетно-возбуждённые молекулы (A) с концентрацией 10^{-6} M, которые нестабильны и дезактивируются как за счёт реакции с аква-комплексами переходного металла Q, так и и при взаимодействии друг с другом.

1)
$$A + Q \longrightarrow P + Q$$
, $k_1 = 5 \check{\mathbf{z}} 10^4 \text{ M}^{-1} \text{c}^{-1}$, $[Q] = 10^{-2} \text{ M}$, $k_2 = 10^9 \text{ M}^{-1} \text{c}^{-1}$.

Через какое время концентрация триплетно-возбужденных молекул уменьшится в 10 раз?

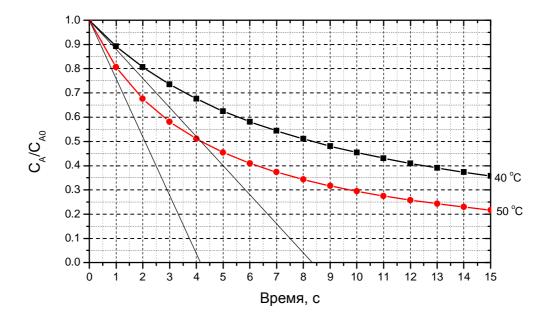
7. В результате радиационного облучения постоянной интенсивности в системе образуются радикальные частицы R со скоростью W_0 радикалов $cm^{-3} \cdot c^{-1}$. В дальнейшем радикалы рекомбинируют по реакции:

$$R + R \xrightarrow{k_2} R_2$$


Найдите уравнения кинетических кривых для R и R_2 , предполагая, что облучение началось в момент времени t=0.

8. При добавлении комплекса железа(III) в раствор перекиси водорода образуется оксокомплекс железа(V) по реакции:

$$Fe^{III} + H_2O_2 \xrightarrow{k_1} Fe^{V} = O + H_2O$$


Зависимость концентрации $Fe^V=O$ от времени для Этого случая изображена на рисунке. Если исходный раствор до добавления комплекса железа содержал также избыток циклогексена, то концентрация $Fe^V=O$ оказывалась ниже порога обнаружения. При этом образовывался эпоксид циклогексена:

$$Fe^{V}=O + \bigcirc \longrightarrow Fe^{III} + \bigcirc O$$

Оцените k_1 , k_{-1} и концентрацию эпоксида циклогексена через 10 мин после начала реакции, если $[\mathrm{Fe^{III}}]_0 = 0.027$ M, $[\mathrm{H_2O_2}]_0 = 0.27$ M, $[\mathrm{H_2O}]_0 = 0.1$ M, $[\mathrm{C_6H_{10}}]_0 = 1$ M.

- 9. На вход реактора **идеального смешения** объёмом 0,25 л подаётся реагент A при атмосферном давлении и температуре 298 K, с начальной объёмной скоростью 0,01 л/с. В реакторе происходит процесс $3A \xrightarrow{k} B$. Найдите величину константы скорости k, если известно, что на выходе из реактора скорость потока уменьшается вдвое по сравнению с начальной.
- 10. Для реакции разложения вещества A была измерена зависимость от времени доли непрореагировавшего вещества (C_A/C_{A0}) при двух температурах: 40° С и 50° С. Начальная концентрация вещества A в обоих случаях была одинакова $C_{A0} = 0,1$ М. Результаты измерения показаны на рисунке. Найдите порядок реакции по веществу A, считая его целочисленным, константу скорости и энергию активации для этой реакции.

ЗАДАНИЕ 2.

11. Вычислите значение стерического фактора для бимолекулярной реакции

$$2 \text{ NOCl} \rightarrow 2 \text{ NO} + \text{Cl}_2$$

если предэкспоненциальный множитель зависит от температуры следующим образом:

$$\lg(\frac{k_0, \pi/(MO \pi b \cdot c)}{T^{1/2}}) = 7.71,$$

а газокинетический радиус NOCl составляет 0.2 нм.

12. Вычислите константу скорости реакции

$$O + CO \rightarrow [O \cdots C \cdots O]^{\neq} \rightarrow CO_2$$

при 1000 К на основании следующих данных:

- 1) Активированный комплекс имеет линейное строение. Межъядерное расстояние в активированном комплексе r_{CO} составляет $1.2 \cdot 10^{-10}$ м, частота дважды вырожденных деформационных колебаний $v = 6 \cdot 10^{12}$ с⁻¹, вырождение основного электронного состояния $g_0 = 1$, симметричное колебание заморожено.
- 2) В молекуле CO межъядерное расстояние составляет $1.12 \cdot 10^{-10}$ м, вырождение основного электронного состояния $g_0 = 1$, колебательная степень свободы заморожена.
- 3) Для атома кислорода вырождение основного электронного состояния $g_0 = 5$.
- 4) Истинная энергия активации составляет 83.68 кДж/моль.
- 5) Трансмиссионный коэффициент равен 1.

13. В газовой фазе протекает простая бимолекулярная реакция

$$O^+ + N_2 \rightarrow [O \cdots N \cdots N]^+ \rightarrow ON^+ + N$$

Активированный комплекс имеет линейное строение, а истинная энергия активации реакции равна нулю. Зная, что константа скорости реакции достигает минимума при температуре 500 °C, вычислите волновое число % (см⁻¹) дважды вырожденных деформационных колебаний активированного комплекса. Остальные колебательные степени свободы активированного комплекса и N_2 можно считать замороженными.

14. Рассчитайте кинетический изотопный эффект при 300 К для реакций

15. Используя вариационную теорию активированного комплекса, оцените расстояние между ионами в активированном комплексе $[Cs^+ \cdots I^-]^{\neq}$ при распаде молекулы CsI в газовой фазе. При расчете принять, что взаимодействие между ионами описывается кулоновским потенциалом, температура 2000 К.

Для справок: $N_A = 6.02 \cdot 10^{23}, \ k_b = 1.38 \cdot 10^{-23}$ Дж/К, R = 8.31 Дж/(моль·К), 1 атм = 101325 Па,

e=1.6·10⁻¹⁹ Кл,
$$\frac{1}{4\pi\epsilon_0}$$
 = 9·10⁹ $\frac{\cancel{Д} \cancel{\cancel{H}} \cancel{\cancel{H}} \cdot \cancel{\cancel{M}}}{\cancel{K} \cancel{\cancel{H}}^2}$.

16. Реакция гидроксильного радикала с молекулой ацетальдегида идет двумя путями:

$$CH_3CHO + OH$$
 $\xrightarrow{k_1}$ CH_3CO $+ H_2O$,
 $CH_3CHO + OH$ $\xrightarrow{k_2}$ CH_2 $CHO + H_2O$.

Для изучения вклада этих реакций в суммарное уменьшение концентрации ацетальдегида использовали дейтерированный ацетальдегид CH₃CDO. Определить отношение констант скорости k_1/k_2 для немеченого ацетальдегида при 298 К, если скорость расходования СН₃СDО меньше скорости расходования СН₃СНО в 1,77 раза. Эффективная константа скорости реакции с немеченым ацетальдегидом $k_H = 16x10^{-12}$ см³/с. При расчете изотопного эффекта учесть только валентное колебание CH с частотой 3000 см⁻¹.

17. Взаимодействие $S_2O_8^{2-}$ с Γ включает две стадии:

$$S_2O_8^{2-} + I^- \rightarrow S_2O_8I^{3-},$$

$$S_2O_8I^{3-} + I^- \rightarrow 2SO_4^{2-} + I_2.$$

В эксперименте была получена зависимость константы скорости бругто-реакции от ионной силы раствора:

I, M	$2,4\cdot10^{-3}$	$4,4\cdot10^{-3}$	$8,5\cdot10^{-3}$	$12,5\cdot10^{-3}$
$k, M^{-1} \cdot c^{-1}$	1.05	1.16	1.26	1.39

Какая из приведенных стадий реакции является лимитирующей?

- 18. Для переходного комплекса реакции $Cl^{35} + H_2 \rightarrow Cl^{35}H + H$ известно следующее:
- 1) комплекс линейный, межъядерные расстояния $r_{H cdots H} = 0.99 \text{ Å}, r_{Cl cdots H} = 1.4 \text{ Å}$ и имеет три частоты колебаний $v_1 = 460 \text{ см}^{-1}$ (дважды вырожденное), $v_2 = 2340 \text{ см}^{-1}$.
- 2) в молекуле водорода $r_{H...H} = 0.74 \text{ Å}$, частота колебаний $v = 4396 \text{ см}^{-1}$.
- 3) трансмиссионный коэффициент $\gamma = 1$.
- 4) Истинная энергия активации 23,5 кДж/моль.

Вырождение основного электронного состояния Cl³⁵ равно 6. Рассчитайте константу скорости при 1500 К.

19. Атомарный кислород реагирует с диметиловым эфиром (ДМЭ) в элементарной стадии согласно уравнению:

	ДМЭ	О	<i>≠</i>
I, кг·м ²	2,178x10 ⁻⁴⁷		$7,390x10^{-47}$
	8,307x10 ⁻⁴⁷		$20,00x10^{-47}$
	9,420x10 ⁻⁴⁷		24,99x10 ⁻⁴⁷
σ	6		1
Z_{vib}	2.89		54.1
m, кг/моль	0,0461	0,016	0,0621
$ v^{\neq} , cm^{-1}$			2600

$$CH_3OCH_3 + O$$
 \xrightarrow{k} CH_3OCH_2 $\xrightarrow{}$ OH $\stackrel{}{.}$

 $CH_3OCH_3 + O$ — \xrightarrow{k} CH_3OCH_2 + OH . В таблице приведены параметры реагентов и переходного состояния

при 600 К. Определите константу скорости реакции с учетом поправки на туннельный эффект. Истинная энергия активации составляет 23 кДж/моль.

20. Под действием кратковременного импульса света происходит фотолиз хлора, растворенного в смеси CCl₄ и пентана (0,15M). В дальнейшем атомы Cl рекомбинируют в клетке либо выходят в растворитель и реагируют с пентаном:

$$(Cl...Cl) \xrightarrow{k_{rec}} Cl_2, \qquad \qquad (Cl...Cl) \xrightarrow{k_{-D}} 2Cl^{\mathbf{g}}, \qquad \qquad Cl^{\mathbf{g}} + C_5H_{12} \rightarrow HCl + C_5H^{\mathbf{g}}_{11}.$$

По окончании реакции [HCl] $_{\infty}/2$ [Cl $_{2}$] $_{\infty}$ =0,5. Найдите k_{rec} , если вязкость растворителя CCl $_{4}$ равна $1.5 \cdot 10^{-3}$ Па·с. Радиус атома хлора составляет 0.12 нм, температура 298 К.

ЗАДАНИЕ 3.

21. Найдите скорость расходования этана при давлении 1 атм. и температуре 1000 К, если газовая смесь содержит в равных количествах этан, этилен и водород.

$1. C_2H_6 \rightarrow 2CH_3$	$k_1 = 1.55 \cdot 10^{-3}$	$[e^{-1}]$
2. $CH_3 + C_2H_6 \rightarrow C_2H_5 + CH_4$	$k_2 = 2.41 \cdot 10^7$	$[л моль^{-1} c^{-1}]$
$3. C_2H_5 \rightarrow C_2H_4 + H$	$k_3 = 4.15 \cdot 10^4$	[c ⁻¹]
4. $H + C_2H_6 \rightarrow H_2 + C_2H_5$	$k_4 = 8.13 \cdot 10^8$	$[л моль^{-1} c^{-1}]$
$5. H + C_2H_4 \rightarrow C_2H_5$	$k_5 = 9.14 \cdot 10^9$	[л моль $^{-1}$ с $^{-1}$]
6. $2C_2H_5 \rightarrow C_2H_4 + C_2H_6$	$k_6 = 1.15 \cdot 10^{11}$	$[л моль^{-1} c^{-1}]$

- 22. Из кинетических данных известно, что скорость экзотермической реакции $W \sim C^3 \exp(-170 \kappa \text{Дж/моль/RT})$, где C - концентрация реагентов. Известно также, что при 700°C тепловой взрыв наступает при давлении 850 тор. При каком давлении наступит взрыв при 850°C.
- 23. Для автокаталитической реакции

$$A+B \xrightarrow{k_1} 2A$$

$$A \xrightarrow{k_2} C$$

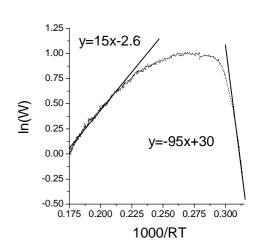
найдите концентрации реагирующих веществ в момент, когда концентрация вещества Aдостигает максимума. В начальный момент времени вещество В было в большом избытке, а продукт C отсутствовал.

24. Гидролиз ацетилхолина ферментом холинэстеразой осуществляется по механизму:

1)
$$S + E \xrightarrow{k_1} C$$
, 2) $C \xrightarrow{k_2} P + E$.

При [S] = $2.5 \times 10^{-4} \,\mathrm{M}$, [E]₀ = $10^{-7} \,\mathrm{M}$ скорость реакции составляла $1.4 \times 10^{-2} \,\mathrm{M\cdot c^{-1}}$. Спектральными методами установлено, что в этих условиях 20 % фермента находится в форме комплекса с ацетилхолином. Определить величину k_2 и константу Михаэлиса K_M .

25. Кинетические закономерности окисления молекулярным кислородом на родии могут быть приближенно описаны схемой Лэнгмюра-Хиншельвуда:


1.
$$CO + Z \xleftarrow{K_{CO}} ZCO$$
 (равновесная)
2. $O_2 + 2Z \xleftarrow{K_{O_2}} 2ZO$ (равновесная)

2.
$$O_2 + 2Z \xrightarrow{K_{O_2}} 2ZO$$
 (равновесная

3.
$$ZO + ZCO \xrightarrow{k_r} 2Z + CO_2$$

при следующих дополнительных условиях:

- а) $\sqrt{K_{02}P_{02}}$ << 1, причем K_{02} не зависит от температуры;
- б) при T < 450 К степень заполнения поверхности по СО близка к 1.
- в) $\theta_{CO} << 1$ в диапазоне температур 550 K < T < 700 K.

Используя приведенный аррениусовский график зависимости скорости окисления СО от температуры, оцените теплоту адсорбции СО и энергию активации стадии 3. Концентрации реагентов в газовой фазе поддерживают постоянными.

26. Каталитическое окисление СО молекулярным кислородом на катализаторе CuO/CeO_2 протекает на границе контакта фаз катализатора. Исходя из предполагаемого механизма окисления, найдите зависимость стационарной скорости реакции от давлений реагентов.

1.
$$\left[Ce^{3+} - V_O - Cu^+\right] + CO \xleftarrow{K_{CO}} \left[Ce^{3+} - V_O - Cu^+ - CO\right]$$

2.
$$\left[Ce^{3+} - V_O - Cu^+ - CO\right] + O_2 \xrightarrow{k_2} \left[Ce^{4+} - O_2^{2-} - Cu^{2+}\right] + CO$$

$$3. \left[Ce^{4+} - O_2^{2-} - Cu^{2+}\right] + \left[Ce^{3+} - V_O - Cu^+ - CO\right] \xrightarrow{k_3} \left[Ce^{3+} - V_O - Cu^+\right] + \left[Ce^{4+} - O^{2-} - Cu^{2+}\right] + CO_2$$

4.
$$\left[Ce^{4+} - O^{2-} - Cu^{2+}\right] + CO \xrightarrow{k_4} \left[Ce^{3+} - V_O - Cu^+\right] + CO_2$$

Квадратными скобками обозначены различные состояния активного центра поверхности, V_0 - кислородная вакансия. При решении принять, что $\theta \left(Ce^{3+}-V_O-Cu^+\right)+\theta \left(Ce^{3+}-V_O-Cu^+-CO\right)\approx 1$.

- 27. Диссоциативная адсорбция молекулярного водорода на грани Cu (111) протекает через образование переходного комплекса со следующими параметрами: расстояние между атомами H-H равно 1 ${\stackrel{\circ}{A}}$; сохраняются две поступательные и одна вращательная степени свободы в плоскости, параллельной поверхности; истинная энергия активации 50 кДж/моль. Найдите скорость адсорбции ${\stackrel{\circ}{H}}_2$ (молекул/с) на 1 ${\stackrel{\circ}{A}}$ поверхности при ${\stackrel{\circ}{P}}_{H2}=1$ Па и ${\stackrel{\circ}{T}}=300$ К. Расстояние H-H в молекуле водорода 0,74 ${\stackrel{\circ}{A}}$.
- 28. Ферментативная реакция ($K_M = 2.7 \cdot 10^{-3} \text{ M}$) подавляется конкурентным ингибитором ($K_I = 3.2 \cdot 10^4 \text{ M}^{-1}$):

$$E + S \xrightarrow{k_1} ES \xrightarrow{k_2} E + P$$

$$E + I \longleftrightarrow EI$$

Концентрация субстрата равна $3.6 \cdot 10^{-4}$ М. Какая концентрация ингибитора понадобится для уменьшения скорости реакции на 65%?

29. Оцените, во сколько раз изменятся нижний (P_1) и верхний (P_2) пределы самовоспламенения стехиометрической смеси H_2 и O_2 после добавления СО. Объемная доля СО в смеси 25 об.%. В ходе цепного процесса СО окисляется по реакции: $OH^{\bullet} + CO \xrightarrow{k_x} CO_2 + H^{\bullet}$.

Гибель радикалов на стенке осуществляется в кинетической области.

30. Разложение озона в воде протекает по неразветвленному цепному механизму. Считая цепи длинными, найдите скорость реакции, если $[O_3] = 4 \cdot 10^{-4} \text{ M}$, pH = 4.

0)
$$O_3 + OH^- \xrightarrow{k_0} O_2^{\bullet -} + HO_2^{\bullet}$$

1)
$$HO_2^{\bullet} \leftarrow \stackrel{K_a}{\longleftarrow} O_2^{\bullet-} + H^+$$

2)
$$O_3 + O_2^{\bullet -} \xrightarrow{k_2} 2O_2 + HO^{\bullet}$$

3)
$$O_3 + HO^{\bullet} \xrightarrow{k_3} O_2 + HO_2^{\bullet}$$

4)
$$HO^{\bullet} + HO^{\bullet} \xrightarrow{k_4} H_2O_2$$

$$k_0 = 70 \ M^{-1} c^{-1}$$

$$K_a = 1.6 \cdot 10^{-5} M^{-1}$$

$$k_2 = 1.6 \cdot 10^9 \ M^{-1} c^{-1}$$

$$k_3 = 1.1 \cdot 10^8 \ M^{-1} c^{-1}$$

$$k_4 = 5 \cdot 10^9 \ M^{-1} c^{-1}$$

РЕШЕНИЯ