How to Predict Crystal Structures

Artem R. Oganov (ARO)

STATE UNIVERSITY OF NEW YORK

(1) Department of Geosciences
(2) Department of Physics and Astronomy
(3) New York Center for Computational Sciences
State University of New York, Stony Brook, NY 11794-2100

Geology Department Moscow State University 119992 Moscow, Russia.

Simple approaches to structure prediction

- Pauling's rules. Parthe rules.
 Valence electron concentration.
- Bond valence model (I.D. Brown).
- Structure diagrams.
- Computational prediction

 -random sampling
 -simulated annealing
 -metadynamics
 -minima hopping
 -evolutionary algorithms

Mooser-Pearson diagram

Does 1st Pauling's rule work?

A bit more on structure diagrams

FIG. 1. Components of the atomic pseudopotential $v_{ps}^{(I)}(r)$ [Eq. (10)] for l=0 of the Sb atom: (1) Pauli potential $U_l(r)$, (2) the Coulomb attraction $-Z_v/r$, (3) core screening, and (4) the total pseudopotential. R_0 and R_m denote the points of crossing and minimum, respectively.

Magic: Medeleev number and chemical scale

Table 1. The Mendeleev number m and chemical scale χ .

m		x	m		x	m		x
1	He	0.00	36	Md	0.7125	70	Au	1.16
2	Ne	0.04	37	Fm	0.715	71	Ag	1.18
3	А	0.08	38	Es	0.7175	72	Cu	1.20
4	Kr	0.12	39	Cf	0.72	73	Mg	1.28
5	Xe	0.16	40	Bk	0.7225	74	Нg	1.32
6	Rn	0.20	41	Cm	0.725	75	Cd	1.36
7	Fr	0.23	42	Am	0.7275	76	Zn	1.44
8	Cs	0.25	43	Pu	0.73	77	Be	1.50
9	Rb	0.30	44	Np	0.7325	78	T1	1.56
10	К	0.35	45	U	0.735	79	In	1.60
11	Na	0.40	46	Pa	0.7375	80	Al	1.66
12	Li	0.45	47	Th	0.74	81	Ga	1.68
13	Ra	0.48	48	Ac	0.7425	82	Pb	1.80
14	Ва	0.50	49	Zr	0.76	83	Sn	1.84
15	Sr	0.55	50	Hf	0.775	84	Ge	1.90
16	Ca	0.60	51	Ti	0.79	85	Si	1.94
17	Yb	0.645	52	Nb	0.82	86	в	2.00
18	Eu	0.655	53	Ta	0.83	87	Bi	2.04
19	Y†	0.66	54	v	0.84	88	Sb	2.08
20	Sc	0.67	55	Mo	0.88	89	As	2.16
21	Lu	0.675	56	w	0.885	90	Р	2.18
22	Tm	0.6775	57	Cr	0.89	91	Ро	2.28
23	Er	0.68	58	Tc	0.935	92	Te	2.32
24	Ho	0.6825	59	Re	0.94	93	Se	2.40
25	Dy	0.685	60	Mn	0.945	94	S	2.44
26	Tb	0.6875	61	Fe	0.99	95	С	2.50
27	Gd	0.69	62	Os	0.995	96	At	2.52
28	Sm	0.6925	63	Ru	1.00	97	I	2.56
29	Pm	0.695	64	Co	1.04	98	Br	2.64
30	Nd	0.6975	65	Ir	1.05	99	Cl	2.70
31	Pr	0.70	66	Rh	1.06	100	N	3.00
32	Ce	0.7025	67	Ni	1.09	101	0	3.50
33	La	0.705	68	Pt	1.105	102	F	4.00
34	Lw	0.7075	69	Pd	1.12	103	н	5.00
35	No	0.71						

XΔ 0-3 0.5 ሱዓ 1.0 1.1 - TA ΠA VIA VIIA VIIA VIIA VIIA IB Ma+IB+Be+IB→ •**⊠B**+ B+¥B+ **•₩**8+ 00000 88098000 C 00 DD m n n п ** 000 $\overline{\infty}$ 2.5 出業 **D** Δ. B ٩ H H a al •KGe 2.0 Fe-W. orte Хв NoO ■ LiO ⊘ CuAu 1.5 Ó Ġ ≜ CuT∘ cm c LiAs ♥ Ge S ∙Au£d 0 12 ■ FeSi ∞ KO İΒ 00 Rp0 ◆FeB •NaCl ▲ MnP NaP 1.1 VШс °CsCl ▲ CdSb • NaTl УШЬ + CrB HaCl 1-0 i ₩∎a °889 ¢ZnO ▼ CoSn < NaC ▼NiAs • SeTI * NaPb VΠ **8** Pb0 MoP ⊳ TlI 03 05 07 0.8 0.9

Pettifor diagram for AB compounds

⁺ The structure maps would be marginally improved by inserting Y between Ho and Dy as suggested by their relative core sizes (cf table 17.7 of Wells (1975)).

Exciting statistics (Baur & Kassner, 1992)

Space-group No.	Space-group symbol	Frequency (inorganic)	Frequency (organic)	Space-group No.	Space-group symbol	Frequency (inorganic)	Frequency (organic)								
1	P1	146	635	73	Ibca	15	15								
2	PĪ	1508	8733	74	Imma	140	5	145	P32	5	22	188	P6c2	29	0
3	P2 P2	19	3278	/5	P4	18	2	146	R3	89	77	189	P62m	237	1
4	\mathcal{C}^{2_1}	156	463	70	P41 PA	21	/9	147	P3	78	51	190	P62c	40	11
6	Pm	13	405	78	P4.	4	24	148	R3 P212	500	235	191	P6/mmm P6/mcc	498	2
7	Pc	74	196	79	14	19	16	149	P321	76	5	193	P6./mcm	216	õ
8	Cm	80	30	80	14,	5	13	151	P3 12	12	1	194	P63/mmc	1254	11
9	Cc	244	501	81	P4	12	11	152	P3,21	149	56	195	P23	16	0
10	P2/m P2 /m	81	222	82	14 P4/	149	76	153	P3212 P3 21	1	21	196	123	49	3
12	$C^{2/m}$	462	254	83 84	P4/m P4./m	19	1 9	155	R32	69	19	198	P2_3	163	31
13	P2/c	206	254	85	P4/n	58	54	156	P3m1	104	0	199	12,3	45	1
14	$P2_1/c$	2827	18885	86	$P4_2/n$	56	87	157	P31m	31	2	200	Pm3	27	0
15	C2/c	1326	3585	87	14/m	149	29	158	P3c1 P31	8		201	Pn3 Fm3	45	2
16	P222	14	3	88	$I4_1/a$	179	153	159	R3m	223	23	202	Fd3	34	1
18	P2221 P2 2 2	62	271	89	P422	l E	1	161	R3c	98	62	204	Im3	100	3
19	P2,2,2	380	5679	90	P4212 P4.22	5	2	162	P31m	55	0	205	Pa3	210	49
20	C222	53	117	92	P4.2.2	87	160	163	P31c P3m1	50	21	206	103 PA32	2	3
21	C222	18	4	93	P4222	0	1	165	P3c1	86	20	207	P4-32	12	ŏ
22	F222	6	0	94	P4:212	13	16	166	R3m	858	18	209	F432	6	2
23	1222	8	14	95	P4322	5	2	167	R3c	458	57	210	F4,32	7	1
24	Pmm^{2}	15	1	96	P43212	29	65	168	P6	3	0	211	1432 P4 32	5	0
26	Pmc2	55	ii ii	98	14.22	12	2	169	P01 P61	10	33 27	212	P4,32 P4,32	17	3
27	Pcc2	0	1	99	P4mm	82	õ	171	P62	i	4	214	14,32	10	Ō
28	Pma2	18	1	100	P4hm	23	0	172	$P6_{4}$	0	2	215	P43m	89	3
29	Pca21 Pr. 2	109	387	101	P4 ₂ cm	0	1	173	P63	189	34	216	F43m	352	1
30	Pmn?	146	8 40	102	P4 ₂ nm P4 ₂ nm	15	3	174	P6 P6/m	100	0	217	P43n	88	8
32	Pha2	26	40	103	P4nc	0	6	176	$P6_3/m$	419	89	219	F43c	24	7
33	Pna2	369	840	105	P4-mc	4	1	177	P622	11	0	220	143d	277	6
34	Pnn2	25	18	106	P4 ₂ bc	2	6	178	P6,22	4	9	221	Pm3m	506	9
35	Cmm2	9	1	107	I4mm	31	2	180	P6,22	61	3	222	Pm3n	53	i
30	$Cmc2_1$	237	93	108	I4cm	6	4	181	P6422	11	0	224	Pn3m	25	3
38	Amm?	52	,	110	$I_{4_1}ma$ $I_{4_2}cd$	12	20	182	P6,22	36	2	225	Fm3m	1532	10
39	Abm2	9	6	111	$P\overline{4}2m$	23	20	183	P6mm	0	1	226	Fm3c Edim	28	0
40	Ama2	38	12	112	P42c	8	ō	185	P6.cm	48	1	228	Fd3c	19	5
41	Aba2	40	46	113	P42,m	95	20	186	P63mc	308	15	229	Im3m	91	10
42	Fmm2	13	11	114	P42 ₁ c	41	76	187	P6m2	56	0	230	Ia3d	251	1
43	Imm?	49	7	115	P4m2 PĀc2	9	2								
45	Iba2	3	44	117	P462	17	4								
46	Ima2	26	5	118	P4n2	21	14								
47	Pmmm	212	0	119	14m2	25	3								
48	Pnnn Pcom	2	3	120	14c2	12	3								
50	Pban	10	2	121	142m 142d	80 224	19								
51	Pmma	57	7	123	P4/mmm	259	20								
52	Pnna	49	49	124	P4/mcc	21	8								
53	Pmna	27	8	125	P4/nbm	5	0								
55	Pcca Pham	23	17	126	P4/nnc PAimhm	8	9								
56	Pccn	50	178	127	P4/mnc	84	4								
57	Phem	121	78	129	P4/nmm	354	10								
58	Pnnm	272	49	130	P4/ncc	49	16								
59	Pmmn Bhan	119	26	131	P42/mmc	22	3								
61	Phea	200	519	132	P42/mcm	4	0								
62	Pnma	2863	2109	133	P42/NDC P4_innm	5	4								
63	Cmcm	677	86	135	P4_mbc	56	5								
64	Cmca	218	77	136	P42/mnm	278	16								
65	Cmmm	103	4	137	P42/nmc	43	10								
66 67	Cccm	46	7	138	P42/ncm	11	3								
68	Coma	23	2	139	14 mmm	1176	11								
69	Fmmm	50	3	140	14/mcm 14./amd	343	3								
70	Fddd	111	47	142	I4 Jacd	56	27								
71	Immm	190	3	143	P3	40	11								
72	Ibam	99	25	144	P3	29	44								

To predict stable structure, we combine global optimization with density-functional calculations

Task: find structure with lowest possible thermodynamic potential: E H=E+PV F=E-TS G=E+PV-TS

Approximate density functionals (LDA, GGA) in many cases have sufficient accuracy

Crystal structure prediction: major unsolved problem.

Acc. Chem. Res. 1994, 27, 309-314

Are Crystal Structures Predictable?

ANGELO GAVEZZOTTI^{*}

"No": by just writing down this concise statement, in what would be the first one-word paper in the chemical literature, one could safely summarize the present state of affairs

Need to find GLOBAL energy minimum.

Trying all structures is impossible:

$$C = \frac{1}{(V/\delta^3)} \frac{(V/\delta^3)!}{[(V/\delta^3) - N]!N!}$$

N _{atoms}	Variants	CPU time
1	1	1 sec.
10	10 ¹¹	10 ³ yrs.
20	10 ²⁵	10 ¹⁷ yrs.
30	10 ³⁹	10 ³¹ yrs.

Crystal structure prediction: What are we facing?

- Find lowest free energy structure from chemical composition
- High-dimensional problem.
 Dimensionality d = 3N + 3.
- Very sensitive to small changes
- Thus: HUGE and 'noisy' search space

- Don't have to search the whole configuration space
- Global minimum surrounded by many very good local minima
- Can assume some overall shape to which we can tune an approach
- Can easily calculate the energies
 from first principles

After local optimization intrinsic dimensionality of landscape is reduced: $d^* = 3N + 3 - \kappa$ $d^*=10.9$ (d=39) for Au₈Pd₄, $d^*=11.6$ (d=99) for Mg₁₆O₁₆, $d^*=32.5$ (d=39) for Mg₄N₄H₄. Complexity $C \sim \exp(\beta d^*)$ [Valle & ARO, in press (2010)]

Example of a (very) simple landscape

Random sampling

(Freeman & Catlow, 1992; van Eijck & Kroon, 2000; Pickard & Needs, 2006)

 No "learning". Works well only for small problems (<30 degrees of freedom – e.g. 10 atoms).

Simulated annealing (Pannetier 1990; Schön & Jansen 1996)

- Random walk. Ever decreasing probability to accept step to worse solution.
- No "learning" only current position as source of information!

Metadynamics (Martonak, Laio, Parrinello 2003)

•Tabu search with reduced dimensionality

$$G^{t}(\mathbf{h}) = G(\mathbf{h}) + \sum_{t' \leq t} W e^{\frac{|\mathbf{h} - \mathbf{h}'|^{-1}}{2\delta h^{2}}} \qquad \mathbf{h}^{t+1} = \mathbf{h}^{t} + \delta h \frac{\phi^{t}}{|\phi^{t}|}$$

Minima hopping (Gödecker 2004)

- Keep history of visited minima. Escape minima with MD, using feedback to control temperature
- Promising, but so far applied only to clusters.

Evolutionary algorithms

- Balance between exploration and exploitation. "Learning" power.
- Depend critically on representation, variation operators etc.
- Early methods Bush (1995), Woodley (2004), Gottwald & Likos (2005).
- Modern algorithm ARO & Glass (2006).

Global optimisation methods: Kangaroo's climb to Mt. Everest (thanks to R. Clegg)

Hill climbing is like dropping a kangaroo somewhere on the surface of the earth, telling it to only hop uphill and hoping it will get to the top of mount Everest.

Global optimisation methods: Kangaroo's climb to **Mt. Everest** hic

Simulated Annealing is like doing the same but getting the kangaroo very very drunk first.

Global optimisation methods: Kangaroo's climb to Mt. Everest

Evolutionary Algorithms are like taking a whole plane load of kangaroos and letting them reproduce freely (not pictured).....

Global optimisation methods: Kangaroo's climb to Mt. Everest

NASA: Antenna designed with an evolutionary algorithm outperforming any human design

Purely theoretical crystal structure prediction is now possible

1. Evolutionary algorithm USPEX

2. Analysing results

3. Some applications

1. Evolutionary algorithm USPEX

(Universal Structure Predictor: Evolutionary Xtallography)

ARO, Glass (2006). *J. Chem. Phys.* **124**, art. 244704. Glass, ARO, Hansen (2006). *Comp. Phys. Comm.* **175**, 713.

RESEARCH NEWS

Crystal structure prediction – evolutionary or revolutionary crystallography?

S. L. Chaplot and K. R. Rao CURRENT SCIENCE, VOL. 91, NO. 11, 10 DECEMBER 2006

Basics of USPEX

- (Random) initial population
- Preselection to discard unphysical or redundant structures
- Relax all structures (VASP, SIESTA, GULP). Fitness value relaxed (free) energy
- Select lowest-energy structures as parents for new generation
- Survival of the fittest

Test 1: "Who would guess that graphite is the stable allotrope of carbon at ordinary pressure?" (Maddox, 1988)

Graphite, correctly predicted to be the stable phase at 1 atm

Metastable sp² forms, harder than diamond? First proposed by R.Hoffmann (1983)

Low-energy structures reveal chemistry

sp-hybridisation sp²-hybridisation sp³-hybridisation (carbyne)

[ARO & Glass, J.Chem.Phys. (2006)]

Test 1: High-pressure phases of carbon are also successfully reproduced

100 GPa: diamond is stable

+found metastable form that matches "superhard graphite" of W.Mao (Li, ARO, Ma, et al., PRL 2009)

2000 GPa: bc8 phase, potentially important in astrophysics

Metastable bc8 form of Si Is known (Kasper, 1964)

[ARO & Glass, J.Chem.Phys. (2006)]

Test 3: USPEX vs random sampling

Test case: 40-atom cell of MgSiO₃ with fixed lattice parameters of post-perovskite

[Martonak, ARO & Glass, Phase Transitions (2007)]

Test 3: USPEX is self-learning, self-improving

Test case: 40-atom cell of MgSiO₃ with fixed lattice parameters of post-perovskite

Best structure obtained after 120000 steps Is *not* PPV

Search with USPEX Found PPV after 600-950 steps

[Martonak, ARO & Glass, Phase Transitions (2007)]

Test 3: USPEX is self-learning, self-improving

40 atoms/cell. Ground state not found among 120'000 random structures, but takes 600-950 structures with USPEX MgSiO₃, 80 atoms/cell

80 atoms/cell. Evolutionary runs take only ~3200 structures to find the ground state

[ARO & Glass, J. Phys. C (2008)]

Multicomponent systems: B2-FeSi is the only stable compound in the Fe-Si system at inner core pressures

[Zhang & ARO, in press (2009)]

[Zurek, Hoffmann, Ashcroft, ARO, Lyakhov, PNAS 106, 17640-17643 (2009)]

Extension: Simultaneous "single-shot" prediction of structures and compositions is possible

2. Analysing the method and its results

ARO & Valle, J.Chem.Phys. (2009)

Fingerprinting method is the basis of our analysis

Fingerprint function is a 1D-descriptor of the structure: diffraction spectrum, PCF, ...

Difference between 2 structures is given by "distance", e.g.: $dist(i,j) = \left(\sum_{k} |fp_{i_k} - fp_{j_k}|^p\right)^{\frac{1}{p}}$

Real system (GaAs): correlation of energy and the distance from the ground-state structure

[ARO & Valle, J. Chem. Phys. 130, 104504 (2009)]

The power of learning

Finding ground state takes ~500 random structures, or 30 structures with USPEX

[ARO et al., Psi-k Highlight (2007)]

Fingerprinting allows to monitor diversity and emergence of order from chaos in simulations

Increase of order during evolutionary simulation of GaAs

[ARO & Valle, J. Chem. Phys. 130, 104504 (2009)]

Grouping structures into similarity classes: quest for more insight in complex systems

Distance-preserving mapping of crystal structures of H_2O (*darker* – lowest E, *lighter* – higher E).

[ARO & Valle, J. Chem. Phys. 130, 104504 (2009)]

Visualizing energy landscapes

Au₈Pd₄ - simple

L_4J_8 - complex

Binary Lennard-Jones crystal (R_L:R_J=1:2)

USPEX finds ground state in 250 attempts, random sampling – in 5000 attempts

[ARO & Valle, J. Chem. Phys. 130, 104504 (2009)]

3. Some applications

Illustrations of structure predictions at the GGA-PAW level of theory

- •Search for new materials
- •Exploration of matter at extreme conditions

Some of the applications done so far:

Vol 457|12 February 2009|doi:10.1038/mature073

Ionic high-pressure form of elemental boron

Artem R. Oganov^{1,2}†, Jiuhua Chen^{3,4}, Carlo Gatti⁴, Yanzhang Ma⁴, Yanming Ma^{3,7}, Colin W. Glass³, Zhenxian Liu⁸, Tony Yu³, Oleksandr O. Kurakevych⁹ & Vladimir L. Solozhenko⁹

nature

Vol 458 [12 March 2009]doi:10.1038/nature0778

week ending 1 MAY 2009

Transparent dense sodium

Yanming Ma^{1,2}, Mikhail Eremets³, Artem R. Oganov^{2,4}†, Yu Xie³, Ivan Trojan³, Sergey Medvedev³, Andriy O. Lyakhov²†, Mario Valle⁵ & Vitali Prakapenka⁶

PRL 102, 065501 (2009) PHYSICAL REVIEW LETTERS 13 FEBRUARY 2009

Novel High Pressure Structures of Polymeric Nitrogen

Yanming Ma,^{1,2,*} Artem R. Oganov,^{2,3} Zhenwei Li,¹ Yu Xie,¹ and Jani Kotakoski⁴

PRL 102, 175506 (2009) PHYSICAL REVIEW LETTERS

Superhard Monoclinic Polymorph of Carbon

Quan Li,¹ Yanming Ma,^{1,6} Artem R. Oganov,^{2,3,†} Hongbo Wang,¹ Hui Wang,¹ Ying Xu,¹ Tian Cui,¹ Ho-Kwang Mao,^{4,‡} and Guangtian Zou¹

PHYSICAL REVIEW B 76, 064101 (2007) Structure of the metallic ζ -phase of oxygen and isosymmetric nature of the $e-\zeta$ phase transition: Ab initio simulations Yanning Ma,¹² Artem R. Oganov,^{12,38} and Colin W. Glass¹

Earth and Planetary Science Learen 241 (2009) 95 103 High-pressure phases of CaCO₃: Crystal structure prediction and experiment Artem R. Oganov ^{a,*}, Colin W. Glass ^a, Shigeaki Ono ^b

Novel high-pressure structures of MgCO₃, CaCO₃ and CO₂ and their role in Earth's lower mantle

Artem R. Oganov ab*, Shigeaki Ono , Yanming Ma ad, Colin W. Glass , Alberto Garcia

PHYSICAL REVIEW B 79, 132109 (2009) Ultra-incompressible phases of tungsten dinitride predicted from first principles

Hui Wang,¹ Quan Li,¹ Yinwei Li,¹ Ying Xu,¹ Tian Cui,¹ Artern R. Oganov,^{2,3} and Yanming Ma^{1,*}

PHYSICAL REVIEW B 79, 054101 (2009) Absence of superconductivity in the high-pressure polymorph of MgB₂ Yanming Ma,^{1,2,#} Yanchao Wang,¹ and Artem R. Oganov^{2,3}

Dissociation of methane under high pressure

Guoying Gao,¹ Artem R. Oganov,^{2,3,*} Yanming Ma,^{1,*} Hui Wang,¹ Peifang Li,¹ Tian Cui,¹ Guangtian Zou¹

Pbcn PRL 102, 087005 (2009) PHYSICAL REVIEW LETTERS 27 FEBRUARY 2009

Novel Structures and Superconductivity of Silane under Pressure

-, Colin W. Glass -, Alberto Garcia - Miguel Martinez-Canales,^{1,2} Artern R. Oganov,^{3,4} Yanming Ma,⁵ Yan Yan,⁵ Andriy O. Lyakhov,³ and Aitor Bergara^{1,2,6}

Superconducting High Pressure Phase of Germane

Guoying Gao,¹ Artem R. Oganov,^{2,3} Aitor Bergara,^{4,5} Miguel Martinez-Canales,^{4,5} Tian Cui,¹ Toshiaki litaka,⁶ Yanming Ma,^{1,2,*} and Guangtian Zou¹

Crystal Structures and Superconductivity of <u>Stannane</u> under High Pressure

> Guoying Gao,¹ Artem R. Oganov,²³ Zhenwei Li,¹ Peifang Li,¹ Tian Cui,¹ Aitor Bergara,^{4,5,5} Yanming Ma,^{1,*} Toshiaki Iitaka,⁷ Guangtian Zou¹

New forms of carbonates – main reservoirs of oxidized carbon in the Earth

CaCO₃

ARO et al., EPSL 241, 95-103 (2006) and EPSL 273, 38-47 (2008)

SiH₄ and GeH₄ show unusual behavior

• Random sampling (Pickard and Needs, PRL 2006):

P2/c (~40 GPa) → $I4_1/a$ (50-263 GPa) → C2/c (>263 GPa)

• USPEX (Martinez, ARO et al., PRL 2009):

*P*2₁/*c* (<25 GPa)→*Fdd*2 (25-55 GPa)→*I*4₁/a (55-220 GPa)→*Pbcn* (>220 GPa)

MgB₂ phases: "hole-doped carbons". High-P "diamond" phase is not superconducting (Ma, Wang, ARO, PRB 2009)

Boron is the most complex element. Even its discovery was full of troubles.

J.L. Gay-Lussac H. Davy

1808: J.L.Gay-Lussac and H.Davy claim the discovery of a new chemical element - boron.

1895: H. Moissan proves that the discovered substance was not elemental boron and contained at most 50-60% of boron. Moissan's material was later found to be less than 90% boron.

F. Wöhler

1858: F. Wöhler concludes that boron exists in two forms - "diamond-like" and "graphite-like"; both were later found to be compounds - AIB_{12} and $B_{48}C_2AI$, respectively.

2004: 16 crystalline forms of boron are known (most believed to be compounds!). Stable forms still unknown.

[ARO & Solozhenko, J. Superhard Mat. 31, 285-291 (2009)]

Located between metals and non-metals, boron is a frustrated element. As a compromise, it forms complex and unusual crystal structures.

	IA																	0
1	H	IIA		F	'er	io	diq	27	[a	ble	2		IIIA		YA	VIA	YIIA	2 He
2	3 Li	4 Be			of	Ε	ler	ne	ent	ts			5 B	6 C	7 N	8 0	9 F	10 Ne
3	11 Na	12 Mg	ШB	IYB	٧B	ΥIB	YIIB		— YII —		IB	IB	13 Al	14 Si	15 P	16 S	17 CI	18 <mark>Ar</mark>
4	19 K	20 Ca	21 Sc	22 Ti	23 Y	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr
5	37 Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	⁵⁰ Sn	51 Sb	52 Te	53 	54 Xe
6	55 Cs	56 Ba	57 *La	72 Hf	73 Ta	74 ₩	75 Re	76 OS	77 Ir	78 Pt	79 Au	80 Hg	81 TI	82 Pb	83 Bi	84 Po	85 At	86 Rn
7	87 Fr	88 Ra	89 +AC	104 Rf	105 Ha	106 106	107 107	108 1 0 8	109 109	110 110								

Boron forms a partially *ionic* phase above 10 GPa

The concept of electron-deficiency was devised to explain boron chemistry. "*it is the ideas that are deficient, not the electrons*" (J.Burdett). 2004: Chen & Solozhenko: synthesised new phase, structure could not be solved.
2006: ARO: found the structure, demonstrated that it is stable.
2008: Solozhenko, Kurakevych & ARO – its

hardness is 50 GPa.

Structure of partially ionic phase of boron: $(B_2)^{\delta+}(B_{12})^{\delta-}$, $\delta=+0.5$ (Bader partitioning), +2.2 (Born dynamical charges).

Phase diagram of boron seems to be clear – at last

γ-B₂₈ was probably observed in a largely discarded 1965 paper by R. Wentorf

Superconducting α-Ga-type phase is purely theoretical and has yet to be synthesized

Sodium is an alkali metal, at normal conditions well described by the nearly free electron model IA 0 Periodic Table IVA IIA IIIA. YA **VIA** ΥIIA of Elements 10 2 Be С Ne F Ο в 13 17 18 14 15 16 3 Si Р S AI CI År IIIB IVB YB IB IB ٧IB 32 33 34 35 36 30 31 20 28 29 23 26 4 Ca Sc Ti Y Cr Mn l Fe Co Ni Cu Zn Ga Ge As Se Br Kr 38 39 40 42 43 46 47 48 49 50 51 52 53 54 41 44 45. 5 Rb Sr Υ Zr Nb Mo Ru Rh Pd Åg Cd Sn Sb Te In Xe 82 83 84 85 86 56 57 72 73 74 75. 76 78 79 80 81 6 Ba *La Hf Та w Re Os Ph Au TI Pb Bi Po At Ir. Ha Rn 88 89 104 105 106 107 108 109 110 7 +Ac Ra

*Lanthanide	58	59	60	61	62	63	64	65	66	67	68	69	70	71
Series	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
+ Actinide	90	91	92	93	94	95	96	97	98	99	100	101	102	103
Series	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr

0	di we	un ell	n is de	5 a 950	an cri	all be	ka ed	li r by	me v tł m	eta ne oc	l, a ne lel	at eai	nc rly	orn í fr	na ee	l c e e	or lec	ndi ctr	tior on
1		IIA	1	F	of	10 E	dio ler	c T me	Fal ent	ble ts	Э		IIIA 5 B	IVA 6 C	۷А 7 N	VIA 8 0	VIIA 9 F	0 2 He 10 Ne	
22	1002 99.	0.9	7 3 c	1VB 22 Ti	VB 23 V	VIB 24 Cr	VIIB 25 Mn	26 Fe	∀II 27 Co	28 Ni	1B 29 Cu	1B 30 Zn	AI 31 Ga	Si 32 Ge	Р ³³ Аз	S 34 Se	CI 35 Br	Ar 36 Kr	
5	37 Rb	38 Sr	39 Y	40 Zr	41 ND	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	⁵⁰ Sn	51 Sb	52 Te	53 	54 Xe	
6	55 Cs	56 Ba	57 *La	72 Hf	73 Ta	74 ₩	75 Re	76 OS	77 Ir	78 Pt	79 Au	80 Hg	81 TI	82 Pb	83 Bi	84 Po	85 At	86 Rn	
7	87 Fr	88 Ra	89 +Ac	104 Rf	105 Ha	106 106	107 107	108 1 0 8	109 1 0 9	110 110									

Series	Се	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
+ Actinide 9	90	91	92	93	94	95	96	97	98	99	100	101	102	103
Series	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr

Sodium shows unexpectedly complex behavior under pressure

1807: Discovered by Sir Humphrey Davy.

2002: Hanfland, Syassen, Novikov, Christensen found remarkably complex structures above 1 Mbar.

This phase is a 1D-metal (Lazicki, PNAS 2009)

2005: Gregoryanz et al. find melting curve minimum at ~1.2 Mbar

Does sodium become a d-metal?

A new phase was predicted in 2007 and subsequently synthesized at high pressure

Yanming Ma (Jilin University, China)

Mikhail Eremets (MPI Mainz, Germany)

Theory predicts a new structure that is insulating and ... transparent!

LETTERS

Transparent dense sodium

Yanming Ma¹²³, Mikhail Eremets², Artem R. Oganov^{2,4}†, Yu Xie¹, Ivan Trojan³, Sergey Medvedev³, Andriy O. Lyakhov²†, Mario Valle³ & Vitali Prakapenka⁴

re, metals exhibit increasingly shorter interatomi Intuitively, this response is expected to be accompanied rease in the widths of the valence and conduction bands need free electron like hebroistor. But at ow be achieved experimentally, antial that core electrons overlap. This effect alters electronic properties from those typically and a face of n metals such as lithi an fLi am (Nac refs 4, 5), leading in turn to structurall and superconductivity with a high critical 13, But the most intriguing prediction-that the see setals Li (ref. 1) and Na (ref. 4) will transfe ting states, owing to pairing of alkali stally confi ed. Here we report to be experi ital observations of a pressure-induced transformatio optically transpare nt phase at ~200 GPa (co -5.0-fold comp on). Experie al data identify the new phase as a wide handgap dielectri pordinated, highly distorted double-hexag and day

pressures (Eq. 1.1), indicating a major phase transformation bescoring to visual bearrains in associated with a gradual decrease in the reflection of visible high frame the sample. The Zmann speech reflection of the state of the sample of the Zmann speech reflection of the state of the state of the sample. The Zmann speech region of the state of the sample of the state (1.1) speech and the state of the state of the state of the Amount speech region in the state of the state of the state decrease in internation, that signify motion plane transition (Fig. 1) decrease in internation, that signify motion plane transition (Fig. 1) decreases in internation performs of the physical consistent with the U1 struggers of the state o

The bosones optically transport at pressures of \sim 2000 GPu, (The sourcefortung uncoversion of a 100 GPu (The three and hown Big 3.4, and at 154 GPu is the run shown in Supplementary Fig. 1a The toget in the absorption spectrum. (Supplementary Fig. 1a) The toget is the absorption spectrum. (Supplementary Fig. 1a) and the parallel show the spectrum of a single interast of transportery consistent with transfer changes in the Reason spectra (Fig. 1a), parallel show the spectrum of a single interast line control at the 13 GPU at the transfer to spectra control of shows the spectra of the spectrum of the spectrum of the spectra of shows the 13 GPU at the transfer to spectra control of shows the spectra of spectra of the spectrum of the spectra of spectra of spectra spectra of spectra of the spectra of the spectra of spectra of spectra spectra of spectra of spectra of spectra of spectra of spectra of spectra spectra of spectra of spectra of spectra of spectra of spectra spectra of spectra of spectra of spectra of spectra of spectra spectra of spectra of spectra of spectra of spectra of spectra of spectra spectra of spectra of spectra of spectra of spectra of spectra of spectra spectra of spectra of spectra of spectra of spectra of spectra of spectra spectra of
110 GPa

20 µm

Sodium becomes transparent at ~200 GPa

(Ma, Eremets, Oganov et al., *Nature* 2009)

Localized interestitial electron pairs make Na insulating. Structure – close packing of interstitial electron pairs!

hP4-Na structure: elemental analog of the NiAs structure.

Theory predicts a new structure that is insulating and ... transparent!

LETTERS

Transparent dense sodium

Yanming Ma¹²³, Mikhail Eremets², Artem R. Oganov^{2,4}†, Yu Xie¹, Ivan Trojan³, Sergey Medvedev³, Andriy O. Lyakhov²†, Mario Valle³ & Vitali Prakapenka⁴

are, metals exhibit increasingly shorter interatomi distances. Intuitively, this response is expected to be accompanied by an increase in the widths of the valence and conduction bands unced free electron like behaviour. But at that can now be achieved experimentally, es that can now be achieved experimentally, compres-e so substantial that core electrons overlap. This effect unatically alters electronic properties from those typically sociated with simple free-electron metals such as lithium (Li; um (Na; refs 4, 5), leading in turn to structurall and superconductivity with a high critical 11, But the most intriguing prediction-that the see netals Li (ref. 1) and Na (ref. 4) will transfe iting states, owing to pairing of alkali to be experin ntally confin ted. Here we report ntal observations of a pressure-induced transformation a an optically transparent phase at ~200 GPa (corre o ~5.0-fold compression). Experimental and compute al data identify the new phase as a wide bandgap dielectric oordinated, highly distorted double-hexagonal close

pressures (Eq. 1.1), indicating a major phase transformation but scoring to yields bearetim in a situation with a gradual decremes in the reflection of visible light frame the sample. The Zmann speech appending zmans (2.100 G are in go post conclusion with the phase of the sample of the sample of the sample. The Sample of the (Pwool phase (Supplementure, Tip, 1.6), Above 190 GGh, the Amount speech ranges show marked (Langer, including a strong decreme in interactive, that signed motion phase resulting as the match end of the sample motion of the phase in consistent with the 113 The X-regular distribution pattern of the phase in consistent with the 113

The bosons optically transporter to pressures of \sim 200 GPs. (The source of transports or source of 1.00 GPs (the bindra ran down in Fig. 1.a, and at 14 GPs in the ran down in Supplementary Fig. 1.a). The edge is the absorption spectrum. (Supplementary Fig. 1.a). The store parent Na a bandge of at 1 and \sim 1.5 eV. The outer of transporters indicates with transfer changes in the Namus spectra (Fig. 1.a). Subscription of the store of the store of the spectra of the spectra of the store of the store of the store of the spectra \sim 140 cm s². One of using the pressure, the transport has preside to 1.13 GPs; at the store, the same spectra to do space and exhibits

Sodium becomes transparent at ~200 GPa

(Ma, Eremets, Oganov et al., *Nature* 2009)

156 GPa

Localized interestitial electron pairs make Na insulating. Structure – close packing of interstitial electron pairs!

hP4-Na structure: elemental analog of the NiAs structure.

Theory predicts a new structure that is insulating and ... transparent!

LETTERS

Transparent dense sodium

Yanming Ma^{1,2}, Mikhail Eremets³, Artem R. Oganov^{2,4}†, Yu Xie¹, Ivan Trojan³, Sergey Medvedev³, Andriy O. Lyakhov²†, Mario Valle⁵ & Vitali Prakapenka⁴

re, metals exhibit increasingly shorter interatomi distances. Intuitively, this response is expected to be accompanied by an increase in the widths of the valence and conduction bands nced free electron like behaviour. But at that can now be achieved experimentally, antial that core electrons overlap. This effect ramatically alters electronic properties from those typically sociated with simple free-electron metals such as lithium (Li; um (Na; refs 4, 5), leading in turn to structurall and superconductivity with a high critical 11, But the most intriguing prediction-that the see netals Li (ref. 1) and Na (ref. 4) will transfe ting states, owing to pairing of alkali to be experis ntally confin ted. Here we report ntal observations of a pressure-induced transformatio Na into an optically transparent phase at ~200 GPa (corres-nding to ~5.0-fold compression). Experimental and computa-nal data identify the new phase as a wide bandgap dielectric oordinated, highly distorted double-hexagonal close

pressures (Eq. 1.1), indicating a major phase transformation but scoring to yields bearetim in a situation with a gradual decremes in the reflection of visible light frame the sample. The Zmann speech appending zmans (2.100 G are in go post conclusion with the phase of the sample of the sample of the sample. The Sample of the (Pwool phase (Supplementure, Tip, 1.6), Above 190 GGh, the Amount speech ranges show marked (Langer, including a strong decreme in interactive, that signed motion phase resulting as the match end of the sample motion of the phase in consistent with the 113 The X-regular distribution pattern of the phase in consistent with the 113

The bosons optically transport is pressures of ~ 200 GPs. (The source of the transport source of 12.00 GPs (The source of the transport one big.2.a. and it 18 GPs in the run above is Supplementary Fig.1.3). The object is the source optical source of 12.00 GPs (The transport N as a long large of at 1 and ~ 1.5 AV. The onise of transport of the source optical source of the optical source of the source optical
199 GPa

Sodium becomes transparent at ~200 GPa

(Ma, Eremets, Oganov et al., *Nature* 2009)

Localized interestitial electron pairs make Na insulating. Structure – close packing of interstitial electron pairs!

hP4-Na structure: elemental analog of the NiAs structure.

The new structure is a strongly squeezed close packing with valence electron pairs occupying interstitials

Electron localization function shows strongly localized behavior of electrons in the "empty space" in Na

An "electride", a compound made of ionic cores and strongly localized interstitial electrons. What type of chemical bonding is this?

Similar model was first proposed for Li by Neaton & Ashcroft (1999)

Food for thought...

How common are electride states inside giant planets and stars?

Their poor electrical conductivity can affect planetary magnetic fields Becoming an insulator, sodium breaks traditional view of the periodic table.

Generally, the Periodic Law becomes invalid at ultrahigh pressures

USPEX is a powerful method for structure prediction

Novel analysis tools give further insight

New interesting structures predicted

New users/developers are welcome:

- 1. Rapidly growing user/developers community. Now ~80 people.
- 2. Major ideas being developed/implemented right now.
- 3. It is interfaced to VASP, SIESTA, GULP and scales on 10³-10⁵ CPUs.
- 4. State-of-the-art analytic tools.

Dedicated to Jeanne

Acknowledgments:

A. Lyakhov

C. Glass

M. Valle

M. Eremets

V. Solozhenko

(Stony Brook)

(Stony Brook)

(Stony Brook)

(ETH Zurich)

(Perth, Australia)

(JAMSTEC, Japan)

(U. Milano, Italy)

(Cornell University)

(Jilin University, China)

(Jilin University, China) (U. Bratislava, Slovakia)

(U. Basque Country, Spain)

J. Chen

Y. Ma

ARO

- Y. Xie
- Q. Zhu
- M. Thompson
- F. Zhang
- M. Parrinello
- S. Ono
- Y. Wang
- G. Gao
- R. Martonak
- C. Gatti
- M. Martinez
 - A. Bergara (U. Basque Country, Spain)
- R. Hoffmann
- C. Hu
- USPEX Users and Developers Community

(~80 people)

(Guilin, China)

USPEX can detect unmixing, when system is large enough and/or the tendency to unmixing is strong

No compounds are known in the Cu-C system. Example of Cu_2C with 12 atoms/cell:

[ARO et al., Psi-k Highlight (2007)]