РАЗМЕРНЫЕ ЭФФЕКТЫ В КАТАЛИЗЕ НАНОЧАСТИЦАМИ МЕТАЛЛОВ

Валерий Иванович Бухтияров

Институт катализа им. Г.К. Борескова

630090 Новосибирск, Россия

тел./fax: +7-(383)-330-67-71/3308-356

e-mail: vib@catalysis.ru

Содержание

- НАНОТЕХНОЛОГИИ, НАНОМАТЕРИАЛЫ И КАТАЛИЗ (сто лет вместе)
- Размерные эффекты в катализе (примеры исследований):
 - ✓ низкотемпературное окисление СО на наноразмерных частицах золота
 - ✓ окисление метана на Pt/Al₂O₃ катализаторах
 - ✓ гидрообессеривание дизельной фракции на на биметаллических сульфидных катализаторах
- Заключение и направления развития

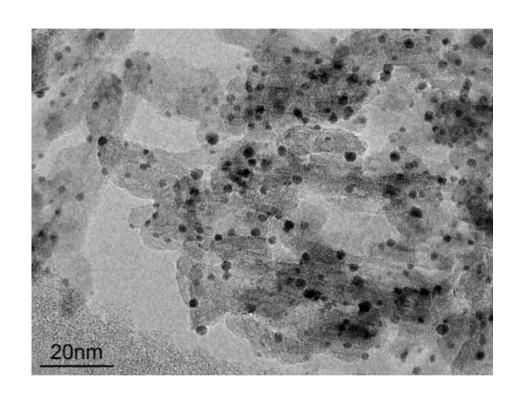
НАНОТЕХНОЛОГИИ, НАНОМАТЕРИАЛЫ И КАТАЛИЗ

Переход к наноразмерному состоянию вещества приводит к появлению уникальных свойств, которые могут быть использованы при развитии новых материалов и технологий, называемых НАНОМАТЕРИАЛАМИ и НАНОТЕХНОЛОГИЯМИ

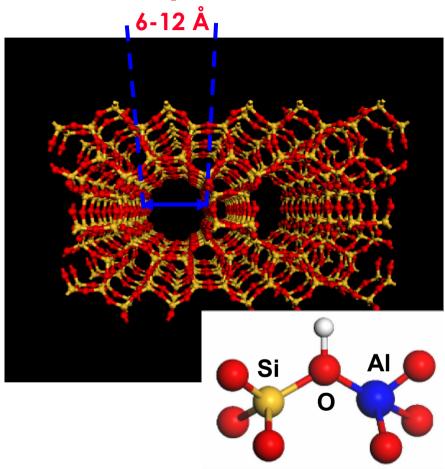
Не только физические свойства, но и реакционная способность вещества в наноразмерном состоянии будет отличаться от его массивных аналогов.

Это создает основу для создания новых функциональных наноматериалов таких как химические сенсоры, КАТАЛИЗАТОРЫ, адсорбенты, мембраны, наполнители и т.п.

НАНОТЕХНОЛОГИИ, НАНОМАТЕРИАЛЫ И КАТАЛИЗ


Почему катализаторы?

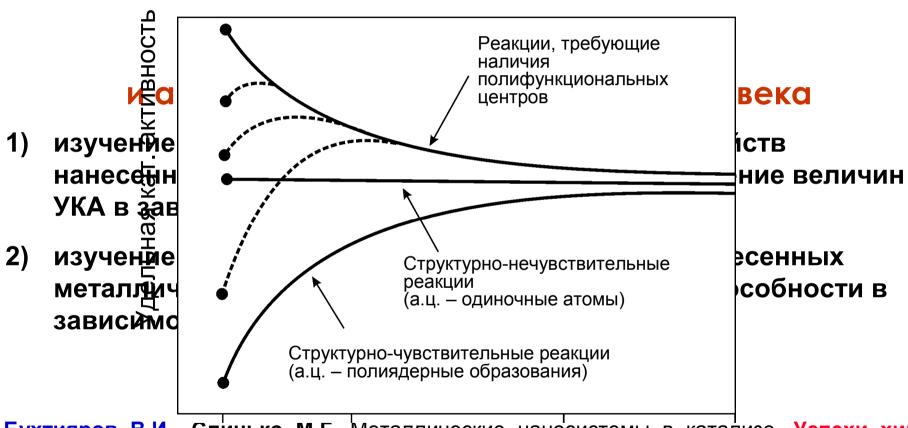
- ✓ 90% процессов переработки нефтяного, химического и нефтехимического сырья, производства химических продуктов и материалов – каталитические
- ✓ Каталитические технологии лежат в основе большинства технологий защиты окружающей среды и производства энергии
- ✓ Производство катализаторов в России составляет 100 тыс. тонн ежегодно (в денежном выражении – 7-9 млрд. руб. в год)
- ✓ С помощью катализаторов производится около 15 % валового продукта РФ (в США ~ 35%)


НАНОТЕХНОЛОГИИ, НАНОМАТЕРИАЛЫ И КАТАЛИЗ

Pt (Pd, Rh)/Al₂O₃, C, и т.п.

- Очистка выхлопных газов автомобилей;
- Реформинг бензиновой фракции;
- Водород-, метанольные ТЭ....

Цеолиты



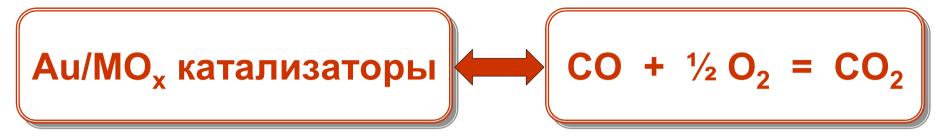
- Каталитический крекинг;
- Нефтехимический синтез....

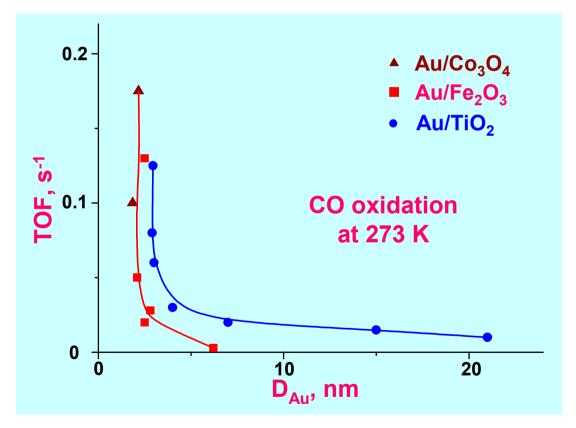
РАЗМЕРНЫЕ ЭФФЕКТЫ В КАТАЛИЗЕ НА МЕТАЛЛАХ

известны с момента открытия Бударом структурно чувствительных и структурно нечувствительных реакций

1. Бухтияров В.И., Слинько М.Г. Металлические наносистемы в катализе. **Успехи химии**, 2001, т. 70, № 2, 147-159.

Размер частиц, Å




Содержание

- НАНОТЕХНОЛОГИИ, НАНОМАТЕРИАЛЫ И КАТАЛИЗ (сто лет вместе)
- Размерные эффекты в катализе (примеры исследований):
 - ✓ низкотемпературное окисление СО на наноразмерных частицах золота
 - ✓ окисление метана на Pt/Al₂O₃ катализаторах
 - ✓ гидрообессеривание дизельной фракции на биметаллических сульфидных катализаторах
- Заключение и направления развития

НИЗКОТЕМПЕРАТУРНОЕ ОКИСЛЕНИЕ СО НА НАНОЧАСТИЦАХ А

M. Haruta et al., J. Catal., 144 (1993) 175

НИЗКОТЕМПЕРАТУРНОЕ ОКИСЛЕНИЕ СО НА НАНОЧАСТИЦАХ А

ЦЕЛИ и ЗАДАЧИ:

- ightharpoonup оптимизация методов приготовления наноразмерных частиц золота на γ и θ Al_2O_3 ;
- изучение размерных эффектов в окислении СО;
- сравнительный анализ каталитической активности и стабильности золото-содержащих катализаторов

Методы приготовления Аи-содержащих катализаторов:

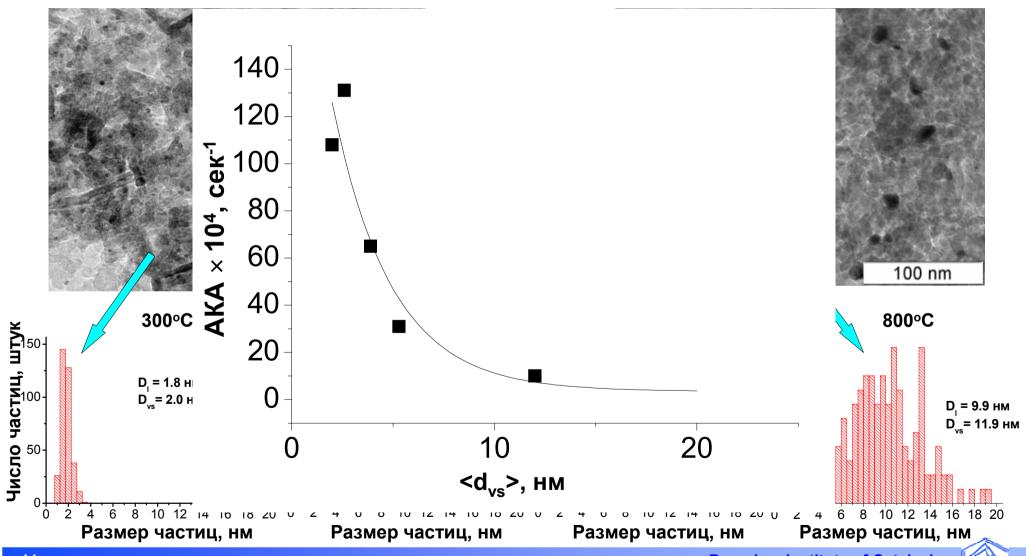
✓ Ионная адсорбция (impregnation); предшественник – HAuCl₄

✓ Нанесение осаждением (DP); HAuCl₄:

[AuCl₄]
$$\xrightarrow{+ \text{NaOH}}$$
 Au(OH)₃·[AuCl_{4-n}(OH)_n]·/MO_x $\xrightarrow{\Delta}$ O_2 O_2 O_2 O_2 O_3 Η Τ.Π.

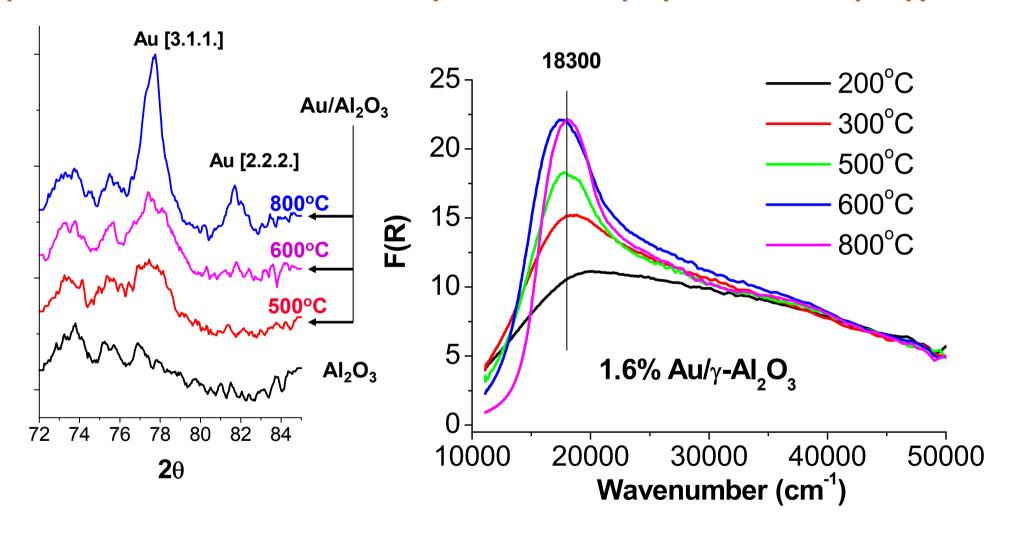
- ✓ Химическая прививка из жидкой фазы (CLPG); Me₂Au(acac)
- ✓ Нанесение из химических паров (CVD); Me₂Au(acac)

Au_{metal}

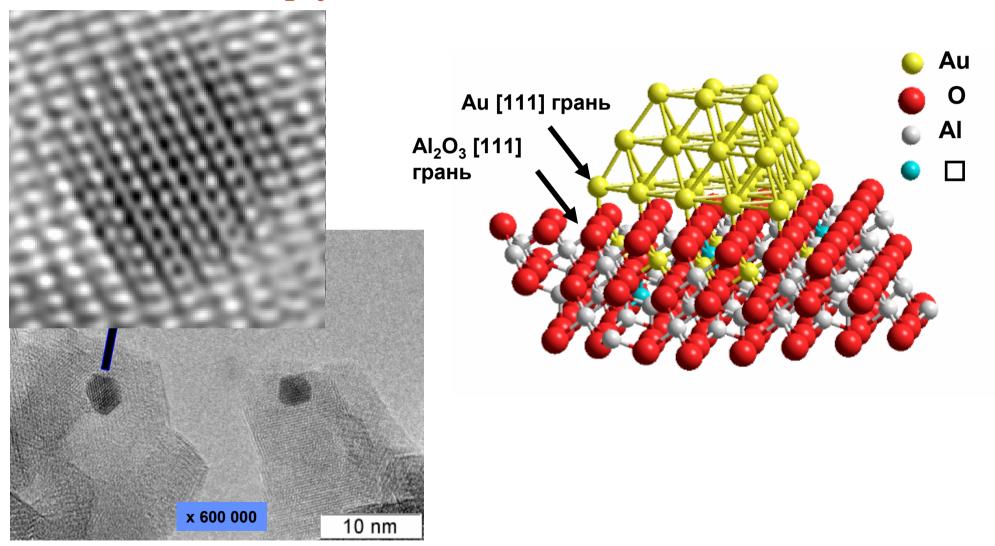

НИЗКОТЕМПЕРАТУРНОЕ ОКИСЛЕНИЕ СО НА НАНОЧАСТИЦАХ А

Активность в окислении СО (313 K) катализаторов Au/Al_2O_3 , приготовленных различными методами

Метод получения		<d<sub>Au>, HM</d<sub>	W р-ции, моль СО ₂ × (г Au) ⁻¹ ·с ⁻¹	УКА, с ⁻¹ *10 ⁴
DP		3.7	240	21
CLPG		13.3	<1	_
CVD	(T _d =600°C)	3.8	95	6.7
	(T _d =20°C)	25-35	<1	_
пропитка	восст. Н ₂	4.1	<1	_
	после обработки ((CH ₃) ₄ N)OH		14	1.3


HU3KOTEMΠΕΡΑΤΎΡΗΟΕ ΟΚИСΛΕΗΜΕ CO Ha Au/Al₂O₃

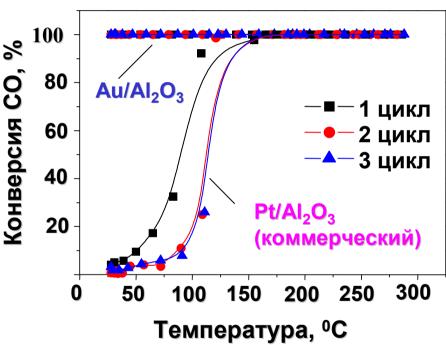
Изменение среднего размера золотых частиц в катализаторах Au/Al₂O₃, приготовленных методом DP и прокаленных при разных температурах


HU3KOTEMΠΕΡΑΤΎΡΗΟΕ ΟΚИСΛΕΗΜΕ CO Ha Au/Al₂O₃

Физико-химическое исследование катализаторов Au/Al_2O_3 , приготовленных методом DP и прокаленных при разных температурах

HU3KOTEMΠΕΡΑΤΎΡΗΟΕ ΟΚИСΛΕΗΝΕ CO Ha Au/Al₂O₃

Физико-химическое исследование структуры активных центров в катализаторах Au/Al_2O_3 , приготовленных методом DP: данные UV-Vis и ПЭМ

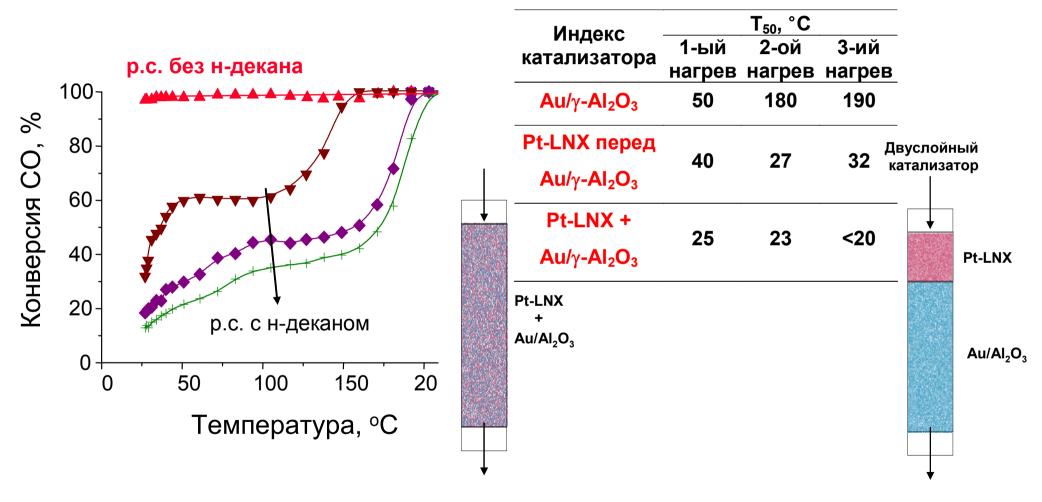


HИЗКОТЕМПЕРАТУРНОЕ ОКИСЛЕНИЕ СО на Au/Al₂O₃

Низкотемпературное окисление СО: основные области применения

 ✓ Обеспечение чистоты воздуха в закрытых помещениях

- ✓ Очистка выхлопных газов автомобилей (проблема "холодного старта")
- ✓ Удаление СО из водорода при использовании ТЭ на протон-проводящих мембранах
- ✓ Каталитическая регенерация СО₂
 в СО₂-лазерах



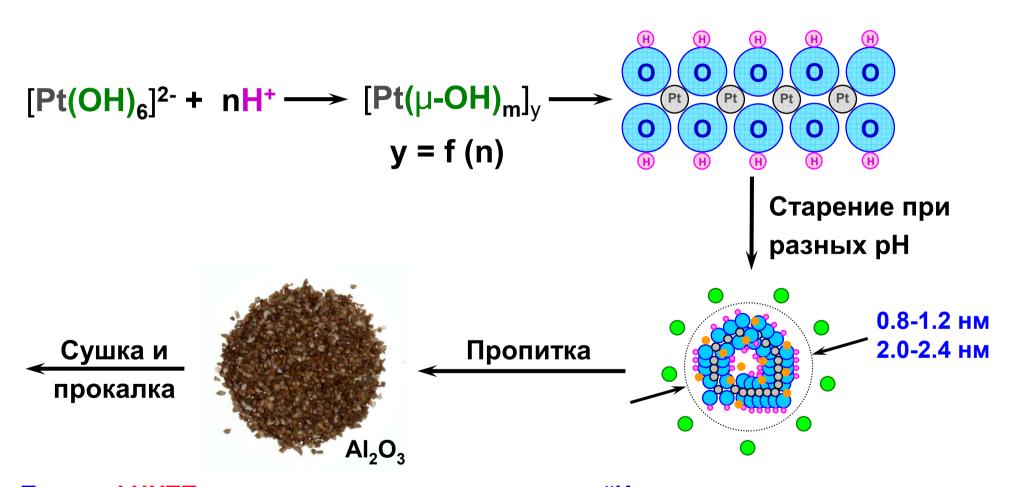
Проточный реактор; $0.1\%CO + 14\%O_2 + 10\%$ of H_2O (N_2 для баланса); Скорость нагрева 10 К/мин; SV = 50 л/час

HU3KOTEMΠΕΡΑΤΎΡΗΟΕ ΟΚИСΛΕΗΜΕ CO Ha Au/Al₂O₃

Разработка технологии приготовления нейтрализаторов выхлопных газов автомобилей: влияние примесей углеводородов

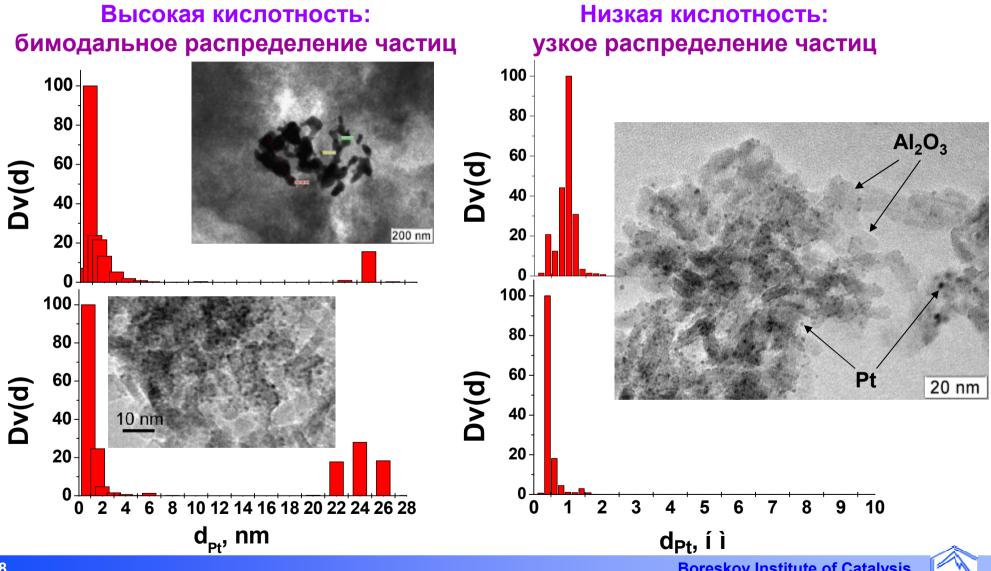
Moroz B.L., Kharas K.C., Smirnov M.Y., Bobrin A.S., Bukhtiyarov V.I. US 2005/0197244; EP 2007/1570895

Реакция полного окисления метана:

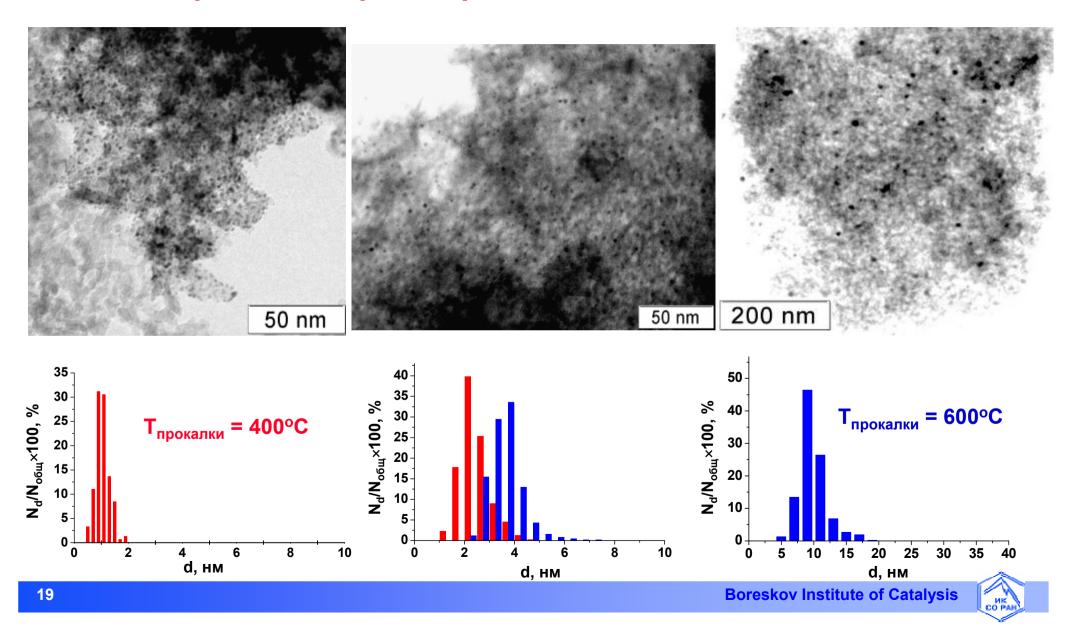

$$CH_4 + 2O_2 \longrightarrow CO_2 + 2H_2O + Q$$

лежит в основе практического использования природного газа в производстве энергии, работе автомобильных двигателей и т.п.

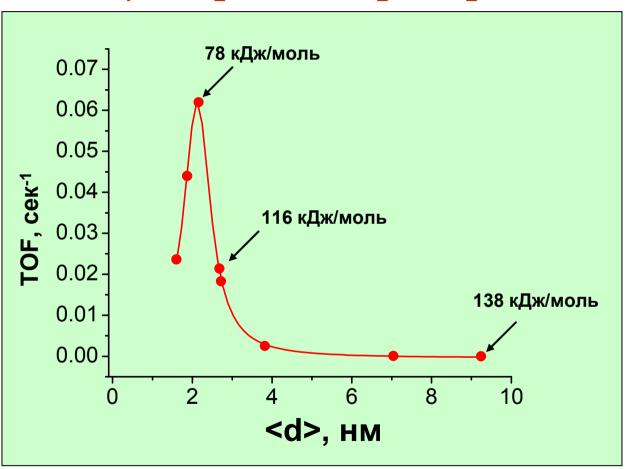
Для этих целей могут быть использованы катализаторы Pt/Al_2O_3 , однако необходима оптимизация загрузки платины в катализатор


Адсорбция полиядерных гидроксокомплексов

Проект ФЦНТП по приоритетному направлению "Индустрия наносистем и материалов" – гос.контракт № 02.434.11.2004

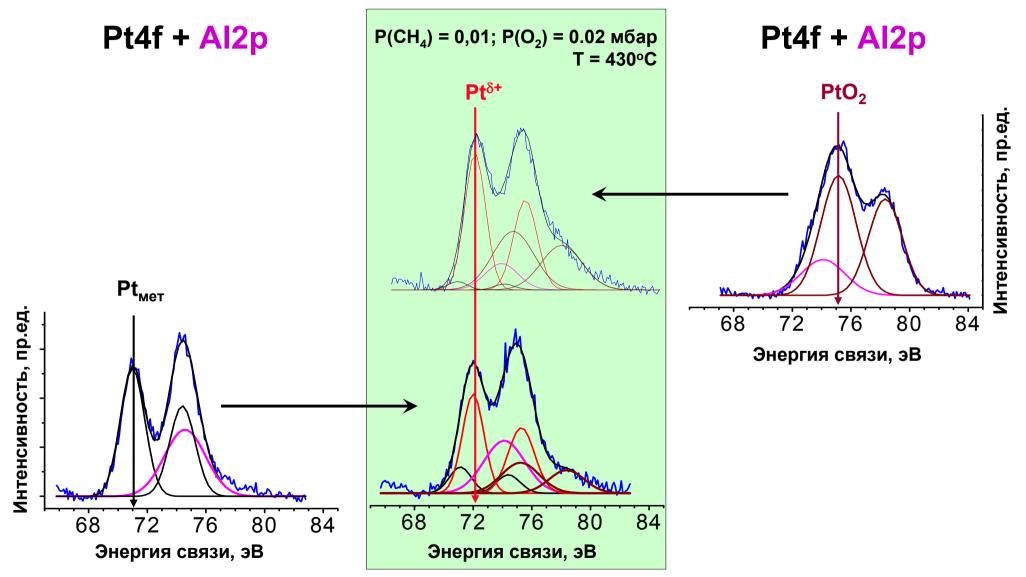


Коллоидные Pt частицы в водных растворах $H_2[Pt(OH)_6]$: данные SAXS

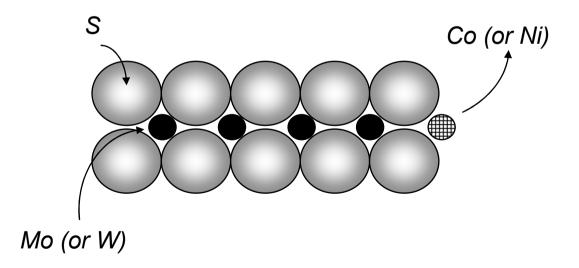

OKИСЛЕНИЕ METAHA на Pt/Al₂O₃ KATAЛИЗАТОРАХ

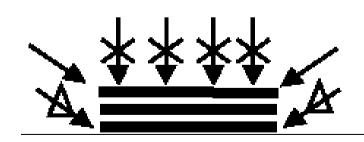
Управление размерами наночастиц платины

Размерный эффект в окислении метана на наночастицах Pt


$$CH_4 + 2O_2 \longrightarrow CO_2 + 2H_2O + Q$$

Проточно-циркуляционный режим, T = 430°C, $CH_4 : O_2 = 1:10$

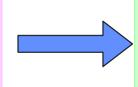

Химическое состояние активного компонента: данные in-situ РФЭС

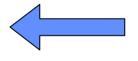


Дизельная фракция должна содержать менее 50 ppm S-содержащих соединений

Активные катализаторы гидрообессеривания:

- У Высокая дисперсность фазы сульфида Мо на поверхности носителя;
- ✓ Образование смешанной СоМоЅ фазы слоистой структуры;
- √ Отсутствие связей атомов Мо с атомами кислорода.




Стадии управляемого синтеза (молекулярного дизайна) нанокомпозитной, полностью сульфидированной активной фазы Со-Мо катализаторов (наш подход)

Пропитка раствором биметаллического Со-Мо соединения

Носитель (Al₂O₃) с оптимальными текстурными свойствами

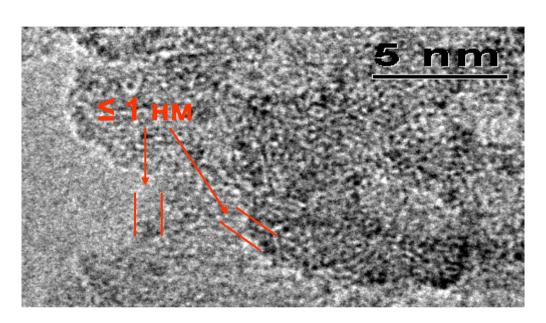
Катализатор с активным компонентом в сульфидной фазе

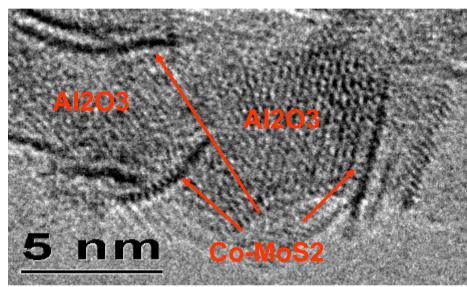
Биметаллическое Со-Мо соединение в оксидной форме

Образование биметаллического Со-Мо соединения в пропиточном растворе:

ЯМР: интенсивность сигнала Мо⁹⁵ уменьшается при введении в раствор Со²⁺

EXAFS: в спектрах появляются расстояния Co-Mo

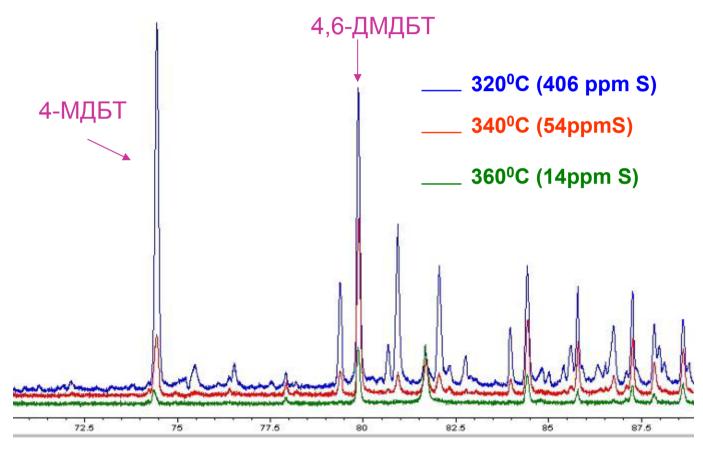

Образование биметаллического Со-Мо соединения в катализаторе


EXAFS: расстояния Мо-Мо и Со-Мо для раствора и катализатора совпадают

ИК: 9 основных сигналов, обнаруженные в оксидном состоянии катализатора, совпадают с ИК сигналами раствора

Биметаллическая Со-Мо сульфидная фаза: данные ПЭМ

А

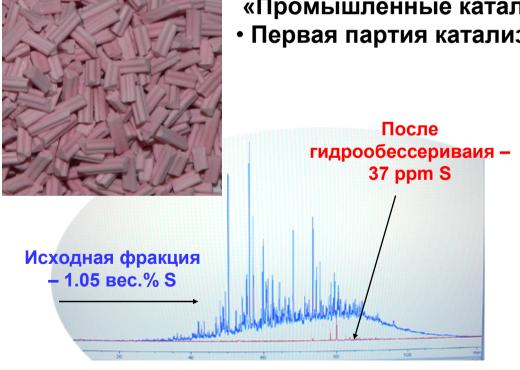

 Π ЭМ изображения высокого разрешения $Co-Mo/Al_2O_3$ катализаторов

А - до сульфидирования «одиночные» Со-Мо -кластеры (с размерами менее 1 нм) на поверхности оксида алюминия.

Б - *после сульфидирования*. Плоские кластеры $Co-MoS_2$ фазы на поверхности оксида алюминия.

Состав индивидуальных соединений серы в конечном продукте в зависимости от температуры катализатора ($P-3.5M\Pi a$, $H_2/yB-300$, LHSW - 2 час⁻¹)

Катализатор активен в превращении диалкил-дибензотиофенов (постер 5.135)


Национальный инновационный проект

«Разработка и промышленное использование новых катализаторов и каталитических технологий производства моторных топлив» (2003–2006)

■ ИК СО РАН разработал технологию производства катализаторов глубокого гидрообессеривания дизельной фракции до содержания серы < 50 ppm</p>

• Технология производства катализаторов внедрена на ОАО «Промышленные катализаторы», Рязань

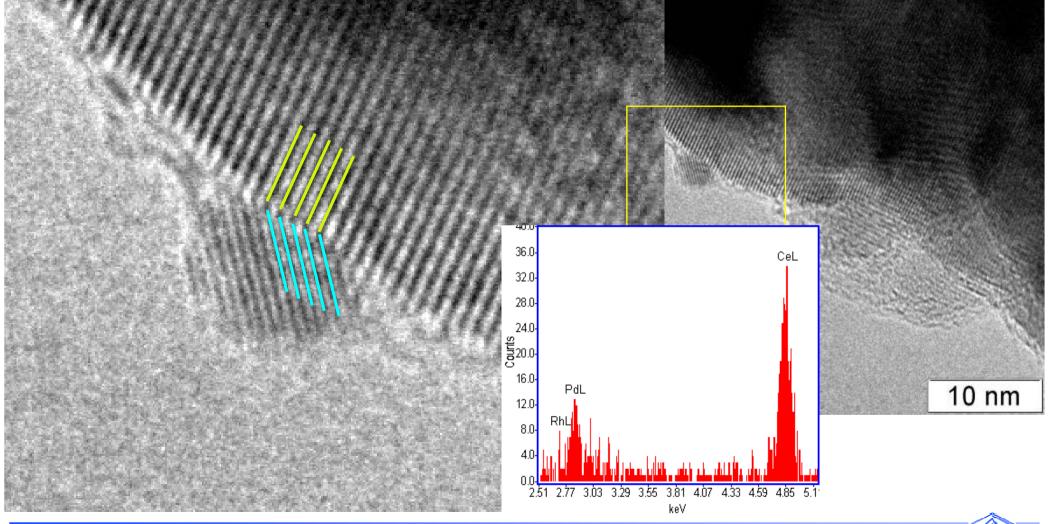
• Первая партия катализатора (28 тонн) наработана в 2007 году

Промышленные испытания опытной партии* нанокомпозитного катализатора, в реакторе гидроочистки на Саратовском НПЗ обеспечили снижение содержания серы с \$ < 1800 ppm до \$ < 50 ppm (Стандарт Евро 4)

Содержание

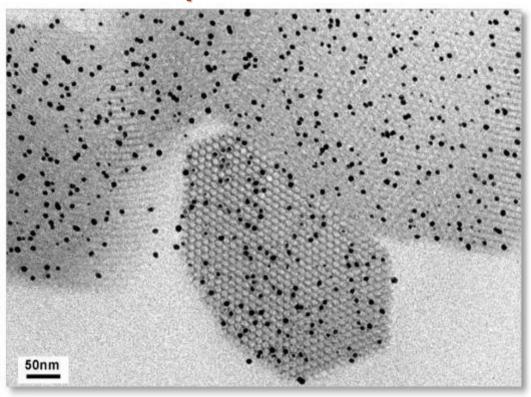
- НАНОТЕХНОЛОГИИ, НАНОМАТЕРИАЛЫ И КАТАЛИЗ (сто лет вместе)
- Размерные эффекты в катализе (примеры исследований):
 - ✓ низкотемпературное окисление СО на наноразмерных частицах золота
 - ✓ окисление метана на Pt/Al₂O₃ катализаторах
 - ✓ гидрообессеривание дизельной фракции на на биметаллических сульфидных катализаторах
- Заключение и направления развития

НАПРАВЛЕНИЯ РАЗВИТИЯ


Систематическое исследование размерных эффектов в катализе и, тем более, их практическое использование требует:

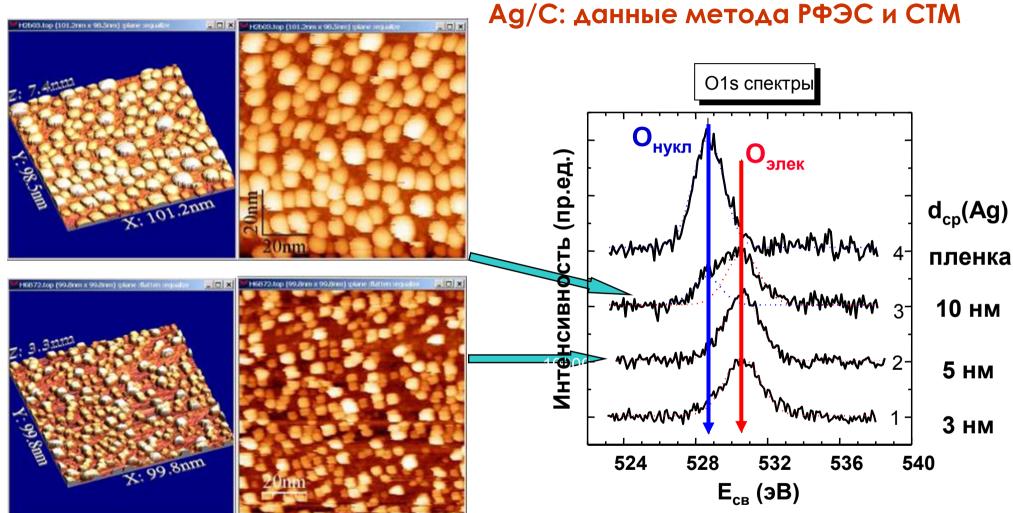
- 1) развития методов синтеза наноразмерных металлических частиц, которые должны обеспечивать:
 - однородное распределение частиц по размерам;
 - стабильность металлических частиц против спекания;
 - экономическую целесообразность
- 2) развития методов тестирования каталитических свойств:
 - с использованием как пористых, так и не пористых носителей;
 - интенсификация каталитических испытаний
- 3) развития методов исследования наноразмерных частиц металла:
 - методы электронной и зондовой микроскопии (ПЭМ, ПЭМ ВР, РЭМ, СТМ, АСМ)
 - > рентгеновские методы (EXAFS, XANES, PPЭП, малоугловое рассеяние)
 - ▶ методы анализа поверхности катализаторов in situ (ИК, SFG, UV-Vis, РФЭС, XAS)
- 4) объяснения причин уникальных каталитических свойств нанообъектов и поиск путей их практического применения, что потребует совместных усилий:
 - **теоретиков и экспериментаторов,**
 - химиков и физиков,
 - специалистов в области науки о поверхности и катализа,
 - > представителей науки и реального производства

КАТАЛИЗАТОРЫ НЕЙТРАЛИЗАЦИИ ВЫХЛОПНЫХ ГАЗОВ (УЭХК)


$Pd+Rh/Al_2O_3+CeO_2-ZrO_2$ (7K5): эпитаксиальный рост частиц Pd на церий-содержащей фазе

ЭПОКСИДИРОВАНИЕ ОЛЕФИНОВ НА СЕРЕБРЕ

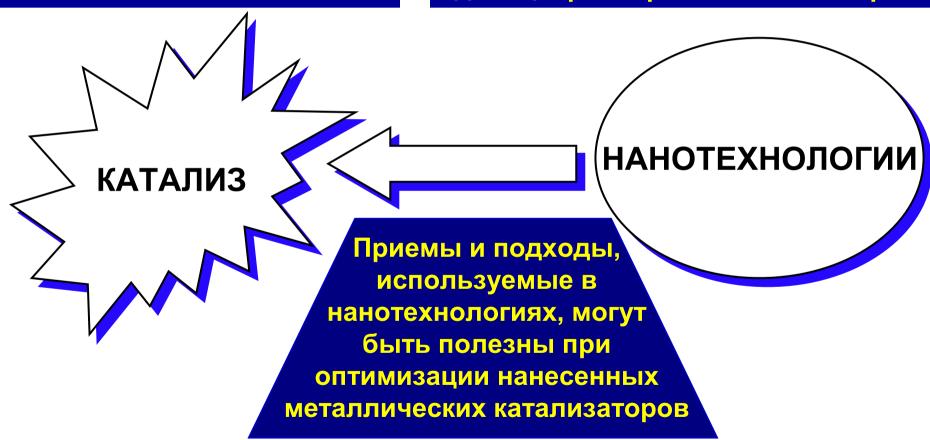
Использование мезофазных мезопористых материалов (МММ) в качестве носителей для металлических нанесенных катализаторов


- ✓ Возможность регулирования размеров пор при приготовлении мезопористых и нанотубулярных материалов (диоксид кремния, углерод)
- ✓ Ограничение размеров нанесенных металлических частиц (при их внутреннем расположении) диаметром пор носителя

Проект РФФИ № 07-03-00931 «Размерные эффекты в реакциях эпоксидирования олефинов на серебре, нанесенном на мезопористые материалы с узким распределением пор по размеру» (2007-2009)

ЭПОКСИДИРОВАНИЕ ОЛЕФИНОВ НА СЕРЕБРЕ

Размерные эффекты в адсорбции О2 на модельных катализаторах



Обнаружен размерный эффект в адсорбции O_2 на нанесенных частицах серебра. Нуклеофильный кислород образуется на Ag частицах с размерами более 10 нм.

ЗАКЛЮЧЕНИЕ И НАПРАВЛЕНИЯ РАЗВИТИЯ

Прикладной катализ начал работать с нанообъектами с начала XX века

В конце XX в. введена приставка 'нано'. Это не означает простую замену такой единицы размерности как Ангстрем

Благодарности

- 1) Б.Л. Мороз, П.А. Пыряев, Е.П. Тихомиров П.П. Семянников, С.В. Трубин, Г.Н. Жаркова (ИНХ СО РАН) В.Е. Niewenhuys (Leiden University, the Netherlands)
- 2) И.Э. Бекк, В.И. Зайковский, В.Н. Пармон Я. Зубавичус, А.А. Чернышев (РНЦ «Курчатовский институт»)
- 3) О.В. Климов, А.С. Иванова, Г.А. Бухтиярова, А.С. Носков Г.М. Шрагина, Я.М. Полункин (ОАО "Промышленные катализаторы")

Финансовая поддержка:

- 1. Netherlands Scientific Foundation (NWO)
- 2. Федеральное агенство науки и инноваций (РосНаука)
 - 3. Министерство промышленности и энергетики

